亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Electrospun polyurethane and hydrogel composite scaffolds as biomechanical mimics for aortic valve tissue engineering

组织工程 脚手架 聚氨酯 生物医学工程 细胞外基质 材料科学 心脏瓣膜 弹性蛋白 乙二醇 PEG比率 纳米技术 化学 复合材料 外科 生物化学 病理 经济 有机化学 医学 财务
作者
Puperi Daniel,Kishan Alysha,Touchet Tyler,Punske Zoe,Yan Wu,Cosgriff-Hernandez Elizabeth,Jennifer L. West,Grande-Allen Jane
出处
期刊:Frontiers in Bioengineering and Biotechnology [Frontiers Media]
卷期号:4 被引量:1
标识
DOI:10.3389/conf.fbioe.2016.01.00548
摘要

Event Abstract Back to Event Electrospun polyurethane and hydrogel composite scaffolds as biomechanical mimics for aortic valve tissue engineering Daniel Puperi1, Alysha Kishan2, Tyler Touchet2, Zoe Punske1, Yan Wu3, Elizabeth Cosgriff-Hernandez2, Jennifer West3 and Jane Grande-Allen1 1 Rice University, Bioengineering, United States 2 Texas A&M University, Biomedical Engineering, United States 3 Duke University, Biomedical Engineering, United States Introduction: Most tissues are composites of several different kinds of extracellular matrix (ECM) components including collagens, elastin, and proteoglycans. Unique composition and organization of ECM allows tissues to serve the various biomechanical needs of the body. Heart valves, in particular, operate in an intense mechanical environment, opening and closing billions of times over a lifetime. The non-linear, viscoelastic, and anisotropic mechanical properties of valve tissue enable the efficient flow of blood through the heart for delivery to the rest of the body. But heart valves can become diseased, resulting in disorganized ECM and mechanical dysfunctions. Tissue engineered replacement valves must match the mechanical properties of native valves to replicate function and appropriately guide the behavior of cells seeded in the scaffold. We are using a composite scaffold of electrospun biodegradable polyurethane (BPUR) and poly(ethylene glycol) (PEG) hydrogel to mimic the heterogeneous valve ECM and mechanical properties. Materials and Methods: PEG was functionalized with an enzymatically degradable peptide sequence, GGGPQGIWGQGK (PQ), to make PEG-PQ-PEG diacrylate. RGDS was conjugated to PEG for a cell adhesion ligand. Poly(ether ester urethane) urea with 50% hard segment was electrospun and collected on a rotating mandrel to produce anisotropic mechanical behavior. The electrospun mat was encapsulated inside PEG-PQ-PEG hydrogel with 2 mM PEG-RGDS and 15x106 valve interstitial cells (VICs)/ml. Mechanical properties of the scaffold were measured in uniaxial tension, and immunohistochemistry demonstrated phenotype of encapsulated cells. Results and Discussion: The synthetic BPUR/PEG-PQ-PEG scaffold has many of the mechanical properties present in native valve tissue. The fibrous nature of the electrospun BPUR mimics ECM components collagen and elastin and the fiber alignment replicates the anisotropic behavior of valve tissue. Most synthetic materials exhibit a linear stress-strain response, which is different from the non-linear stress-strain curve of native valves (Figure 1A), especially in the 10-30% physiological strain range. Figure 1: (A) Uniaxial tensile testing of aortic valve tissue in radial direction. Stress vs. strain plot is nonlinear, with low-modulus toe region followed by transition to stiffer collagen region; (B) 1st and (C) 20th cyclic tensile loading of BPUR/PEG-PQ-PEG composite scaffold Bilinear Preconditioning the BPUR in tension altered the microphase morphology such that a bilinear stress-strain response was observed upon subsequent tensile loading of the composite scaffold (Figure 1B-C shows the 1st and 20th cycles). The PEG hydrogel component was a bioactive cell carrier in which encapsulated VICs showed healthy phenotype in 3D. Figure 2: Cross-section of top side of composite scaffold. VICs encapsulated in PEG-PQ-PEG hydrogel, which is between dashed lines; BPUR is UV auto-fluorescent (blue) in lower right corner The cells sensed the stiffness and alignment of the electrospun fibers, without strong αSMA expression which would have been indicative of a diseased state. The next step will be to assess scaffold remodeling with cell secreted ECM after long term culture under cyclic tension. Conclusion: The composite BPUR/PEG-PEG-PQ scaffold is a step towards a tissue engineered valve that mimics the structural and functional heterogeneity of native valves. Keywords: Hydrogel, Biomimetic, heart valve, 3D scaffold Conference: 10th World Biomaterials Congress, Montréal, Canada, 17 May - 22 May, 2016. Presentation Type: General Session Oral Topic: Biomimetic materials Citation: Puperi D, Kishan A, Touchet T, Punske Z, Wu Y, Cosgriff-Hernandez E, West J and Grande-Allen J (2016). Electrospun polyurethane and hydrogel composite scaffolds as biomechanical mimics for aortic valve tissue engineering. Front. Bioeng. Biotechnol. Conference Abstract: 10th World Biomaterials Congress. doi: 10.3389/conf.FBIOE.2016.01.00548 Copyright: The abstracts in this collection have not been subject to any Frontiers peer review or checks, and are not endorsed by Frontiers. They are made available through the Frontiers publishing platform as a service to conference organizers and presenters. The copyright in the individual abstracts is owned by the author of each abstract or his/her employer unless otherwise stated. Each abstract, as well as the collection of abstracts, are published under a Creative Commons CC-BY 4.0 (attribution) licence (https://creativecommons.org/licenses/by/4.0/) and may thus be reproduced, translated, adapted and be the subject of derivative works provided the authors and Frontiers are attributed. For Frontiers’ terms and conditions please see https://www.frontiersin.org/legal/terms-and-conditions. Received: 27 Mar 2016; Published Online: 30 Mar 2016. Login Required This action requires you to be registered with Frontiers and logged in. To register or login click here. Abstract Info Abstract The Authors in Frontiers Daniel Puperi Alysha Kishan Tyler Touchet Zoe Punske Yan Wu Elizabeth Cosgriff-Hernandez Jennifer West Jane Grande-Allen Google Daniel Puperi Alysha Kishan Tyler Touchet Zoe Punske Yan Wu Elizabeth Cosgriff-Hernandez Jennifer West Jane Grande-Allen Google Scholar Daniel Puperi Alysha Kishan Tyler Touchet Zoe Punske Yan Wu Elizabeth Cosgriff-Hernandez Jennifer West Jane Grande-Allen PubMed Daniel Puperi Alysha Kishan Tyler Touchet Zoe Punske Yan Wu Elizabeth Cosgriff-Hernandez Jennifer West Jane Grande-Allen Related Article in Frontiers Google Scholar PubMed Abstract Close Back to top Javascript is disabled. Please enable Javascript in your browser settings in order to see all the content on this page.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kevin完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
Hello应助科研通管家采纳,获得10
6秒前
MchemG应助科研通管家采纳,获得10
6秒前
back you up应助科研通管家采纳,获得10
6秒前
量子星尘发布了新的文献求助10
24秒前
mt13完成签到,获得积分10
25秒前
26秒前
mt13发布了新的文献求助20
30秒前
Jasper应助复杂不二采纳,获得10
31秒前
33秒前
hihi发布了新的文献求助10
33秒前
芝士土豆泥完成签到,获得积分10
37秒前
40秒前
40秒前
量子星尘发布了新的文献求助10
42秒前
彭于晏应助hihi采纳,获得10
43秒前
量子星尘发布了新的文献求助10
51秒前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
金金发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
MchemG应助科研通管家采纳,获得20
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
平常易烟发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661009
求助须知:如何正确求助?哪些是违规求助? 3222203
关于积分的说明 9744032
捐赠科研通 2931818
什么是DOI,文献DOI怎么找? 1605232
邀请新用户注册赠送积分活动 757760
科研通“疑难数据库(出版商)”最低求助积分说明 734503