A novel strategy for the preparation of porous microspheres and its application in peptide drug loading

PLGA公司 化学工程 聚乙二醇 膜乳化 材料科学 聚合物 多孔性 微粒 乳状液 毒品携带者 溶剂 高分子化学 药物输送 化学 纳米颗粒 纳米技术 有机化学 复合材料 工程类
作者
Yi Wei,Yuxia Wang,Huixia Zhang,Weiqing Zhou,Guanghui Ma
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:478: 46-53 被引量:62
标识
DOI:10.1016/j.jcis.2016.05.045
摘要

A new strategy is developed to prepare porous microspheres with narrow size distribution for peptides controlled release, involving a fabrication of porous microspheres without any porogens followed by a pore closing process. Amphiphilic polymers with different hydrophobic segments (poly(monomethoxypolyethylene glycol-co-d,l-lactide) (mPEG-PLA), poly(monomethoxypolyethylene glycol-co-d,l-lactic-co-glycolic acid) (mPEG-PLGA)) are employed as microspheres matrix to prepare porous microspheres based on a double emulsion-premix membrane emulsification technique combined with a solvent evaporation method. Both microspheres possess narrow size distribution and porous surface, which are mainly caused by (a) hydrophilic polyethylene glycol (PEG) segments absorbing water molecules followed by a water evaporation process and (b) local explosion of microspheres due to fast evaporation of dichloromethane (MC). Importantly, mPEG-PLGA microspheres have a honeycomb like structure while mPEG-PLA microspheres have a solid structure internally, illustrating that the different hydrophobic segments could modulate the affinity between solvent and matrix polymer and influence the phase separation rate of microspheres matrix. Long term release patterns are demonstrated with pore-closed microspheres, which are prepared from mPEG-PLGA microspheres loading salmon calcitonin (SCT). These results suggest that it is potential to construct porous microspheres for drug sustained release using permanent geometric templates as new porogens.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姚博士快毕业完成签到,获得积分10
1秒前
无语大王完成签到,获得积分10
1秒前
怡然的莫茗完成签到,获得积分10
2秒前
清秀的以云完成签到,获得积分20
3秒前
猫好好完成签到,获得积分10
4秒前
5秒前
hhzz完成签到,获得积分10
5秒前
5秒前
xhemers完成签到,获得积分10
5秒前
111发布了新的文献求助10
5秒前
6秒前
爱静静应助怡然的莫茗采纳,获得10
7秒前
8秒前
科研通AI5应助清秀的以云采纳,获得30
8秒前
李健的粉丝团团长应助xx采纳,获得10
10秒前
大豪子发布了新的文献求助30
10秒前
李繁蕊发布了新的文献求助10
10秒前
14秒前
14秒前
14秒前
14秒前
橘柚完成签到 ,获得积分10
15秒前
zmmmm发布了新的文献求助10
15秒前
领导范儿应助温言采纳,获得10
15秒前
思源应助OvO采纳,获得10
17秒前
迷糊发布了新的文献求助30
18秒前
LY发布了新的文献求助10
19秒前
zzz完成签到,获得积分10
19秒前
KimJongUn完成签到,获得积分10
19秒前
21秒前
21秒前
zy完成签到,获得积分10
22秒前
开心果子发布了新的文献求助10
22秒前
云痴子完成签到,获得积分10
23秒前
SciGPT应助粥粥采纳,获得10
23秒前
23秒前
23秒前
24秒前
苏源完成签到,获得积分10
24秒前
wu关闭了wu文献求助
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808