亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Surface Induced Dissociation: Dissecting Noncovalent Protein Complexes in the Gas phase

质谱法 化学 气相 化学计量学 结构生物学 蛋白质亚单位 四级结构 化学物理 拓扑(电路) 纳米技术 材料科学 生物化学 色谱法 物理化学 组合数学 基因 数学
作者
Mowei Zhou,Vicki H. Wysocki
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:47 (4): 1010-1018 被引量:137
标识
DOI:10.1021/ar400223t
摘要

The quaternary structures of proteins are both important and of interest to chemists, because many proteins exist as complexes in vivo, and probing these structures allows us to better understand their biological functions. Conventional structural biology methods such as X-ray crystallography and nuclear magnetic resonance provide high-resolution information on the structures of protein complexes and are the gold standards in the field. However, other emerging biophysical methods that only provide low-resolution data (e.g. stoichiometry and subunit connectivity) on the structures of the protein complexes are also becoming more important to scientists. Mass spectrometry is one of these approaches that provide lower than atomic structural resolution, but the approach is higher throughput and provides not only better mass information than other techniques but also stoichiometry and topology. Fragile noncovalent interactions within the protein complexes can be preserved in the gas phase of MS under gentle ionization and transfer conditions. Scientists can measure the masses of the complexes with high confidence to reveal the stoichiometry and composition of the proteins. What makes mass spectrometry an even more powerful method is that researchers can further isolate the protein complexes and activate them in the gas phase to release subunits for more structural information. The caveat is that, upon gas-phase activation, the released subunits need to faithfully reflect the native topology so that useful information on the proteins can be extracted from mass spectrometry experiments. Unfortunately, many proteins tend to favor unfolding upon collision with neutral gas (the most common activation method in mass spectrometers). Therefore, this typically results in limited insights on the quaternary structure of the precursor without further manipulation of other experimental factors. Scientists have observed, however, that valuable structural information can be obtained when the gas-phase proteins are activated by collision with a surface. Subcomplexes released after surface collision are consistent with the native quaternary structure of several protein systems studied, even for a large chaperone protein, GroEL, that approaches megadalton mass. The unique and meaningful data generated from surface induced dissociation (SID) have been attributed to the fast and energetic activation process upon collision with a massive target, the surface. In this Account, we summarize our SID studies of protein complexes, with emphasis on the more recent work on the combination of ion mobility (IM) with SID. IM has gained popularity over the years not only as a gas-phase separation technique but also as a technique with the ability to measure the size and shape of the proteins in the gas phase. Incorporation of IM before SID allows different conformations of a protein to be separated and examined individually by SID for structural details. When IM is after SID, the cross sections of the SID products can be measured, providing insight on the dissociation pathways, which may mimic disassembly pathways. Furthermore, the separation by IM greatly reduces the peak overlapping (same m/z) and coalescence (merging) of SID products, improving the resolving power of the method. While there are still many unanswered questions on the fundamental properties of gas-phase proteins and a need for further research, our work has shown that SID can be a complementary gas-phase tool providing useful information for studying quaternary structures of noncovalent protein complexes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
李爱国应助H_W采纳,获得10
8秒前
DD发布了新的文献求助10
9秒前
10秒前
11秒前
12秒前
腰突患者的科研完成签到,获得积分10
14秒前
隐形曼青应助是个哑巴采纳,获得10
16秒前
22秒前
mmm完成签到,获得积分10
25秒前
28秒前
是个哑巴发布了新的文献求助10
32秒前
33秒前
aaa完成签到,获得积分10
36秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
吾日三省吾身完成签到 ,获得积分10
39秒前
nn666发布了新的文献求助10
39秒前
夏xx完成签到 ,获得积分10
40秒前
CNC完成签到 ,获得积分10
46秒前
nn666完成签到,获得积分10
48秒前
49秒前
51秒前
括弧发布了新的文献求助10
53秒前
53秒前
汉堡包应助RJ采纳,获得10
54秒前
葛子文发布了新的文献求助200
1分钟前
1分钟前
morena发布了新的文献求助10
1分钟前
答辩完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
香蕉诗蕊应助冯宇采纳,获得10
1分钟前
小蘑菇应助Jiang采纳,获得10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Criminology34给tao的求助进行了留言
2分钟前
FashionBoy应助guyutang采纳,获得30
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657893
求助须知:如何正确求助?哪些是违规求助? 4813759
关于积分的说明 15080551
捐赠科研通 4816120
什么是DOI,文献DOI怎么找? 2577116
邀请新用户注册赠送积分活动 1532139
关于科研通互助平台的介绍 1490680