Spatial Topography of Individual-Specific Cortical Networks Predicts Human Cognition, Personality, and Emotion

概化理论 功能磁共振成像 人工智能 计算机科学 认知心理学 心理学 认知 人格 连接体 模式识别(心理学) 机器学习 神经科学 功能连接 发展心理学 社会心理学
作者
Ru Kong,Jingwei Li,Csaba Orban,Mert R. Sabuncu,Hesheng Liu,Alexander Schaefer,Nanbo Sun,Xi‐Nian Zuo,Avram J. Holmes,Simon B. Eickhoff,B.T. Thomas Yeo
出处
期刊:Cerebral Cortex [Oxford University Press]
卷期号:29 (6): 2533-2551 被引量:581
标识
DOI:10.1093/cercor/bhy123
摘要

Resting-state functional magnetic resonance imaging (rs-fMRI) offers the opportunity to delineate individual-specific brain networks. A major question is whether individual-specific network topography (i.e., location and spatial arrangement) is behaviorally relevant. Here, we propose a multi-session hierarchical Bayesian model (MS-HBM) for estimating individual-specific cortical networks and investigate whether individual-specific network topography can predict human behavior. The multiple layers of the MS-HBM explicitly differentiate intra-subject (within-subject) from inter-subject (between-subject) network variability. By ignoring intra-subject variability, previous network mappings might confuse intra-subject variability for inter-subject differences. Compared with other approaches, MS-HBM parcellations generalized better to new rs-fMRI and task-fMRI data from the same subjects. More specifically, MS-HBM parcellations estimated from a single rs-fMRI session (10 min) showed comparable generalizability as parcellations estimated by 2 state-of-the-art methods using 5 sessions (50 min). We also showed that behavioral phenotypes across cognition, personality, and emotion could be predicted by individual-specific network topography with modest accuracy, comparable to previous reports predicting phenotypes based on connectivity strength. Network topography estimated by MS-HBM was more effective for behavioral prediction than network size, as well as network topography estimated by other parcellation approaches. Thus, similar to connectivity strength, individual-specific network topography might also serve as a fingerprint of human behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
努力毕业ing完成签到,获得积分10
刚刚
光亮语梦发布了新的文献求助10
2秒前
田様应助这像话吗采纳,获得10
2秒前
bkagyin应助shandianluwei采纳,获得10
3秒前
3秒前
ZRR完成签到,获得积分10
5秒前
5秒前
5秒前
feb发布了新的文献求助20
6秒前
龙弟弟完成签到 ,获得积分10
8秒前
8秒前
小汤发布了新的文献求助10
9秒前
9秒前
10秒前
苗条的一兰完成签到,获得积分10
10秒前
10秒前
fzlx完成签到,获得积分10
10秒前
SciGPT应助韩老慢采纳,获得10
11秒前
小橘子发布了新的文献求助10
11秒前
脑洞疼应助愤怒的铁身采纳,获得10
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
herococa应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
Orange应助科研通管家采纳,获得10
14秒前
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
斯寜应助科研通管家采纳,获得20
14秒前
浮游应助科研通管家采纳,获得10
14秒前
wanci应助科研通管家采纳,获得10
14秒前
李爱国应助科研通管家采纳,获得30
14秒前
14秒前
帅的氛围灯完成签到 ,获得积分10
14秒前
尊嘟假嘟完成签到,获得积分10
14秒前
Sakura发布了新的文献求助20
14秒前
wzc发布了新的文献求助10
15秒前
bear发布了新的文献求助10
16秒前
chen发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075598
求助须知:如何正确求助?哪些是违规求助? 4295360
关于积分的说明 13384177
捐赠科研通 4117030
什么是DOI,文献DOI怎么找? 2254637
邀请新用户注册赠送积分活动 1259275
关于科研通互助平台的介绍 1192040