Spatial Topography of Individual-Specific Cortical Networks Predicts Human Cognition, Personality, and Emotion

概化理论 功能磁共振成像 人工智能 计算机科学 认知心理学 心理学 认知 人格 连接体 模式识别(心理学) 机器学习 神经科学 功能连接 发展心理学 社会心理学
作者
Ru Kong,Jingwei Li,Csaba Orban,Mert R. Sabuncu,Hesheng Liu,Alexander Schaefer,Nanbo Sun,Xi‐Nian Zuo,Avram J. Holmes,Simon B. Eickhoff,B.T. Thomas Yeo
出处
期刊:Cerebral Cortex [Oxford University Press]
卷期号:29 (6): 2533-2551 被引量:581
标识
DOI:10.1093/cercor/bhy123
摘要

Resting-state functional magnetic resonance imaging (rs-fMRI) offers the opportunity to delineate individual-specific brain networks. A major question is whether individual-specific network topography (i.e., location and spatial arrangement) is behaviorally relevant. Here, we propose a multi-session hierarchical Bayesian model (MS-HBM) for estimating individual-specific cortical networks and investigate whether individual-specific network topography can predict human behavior. The multiple layers of the MS-HBM explicitly differentiate intra-subject (within-subject) from inter-subject (between-subject) network variability. By ignoring intra-subject variability, previous network mappings might confuse intra-subject variability for inter-subject differences. Compared with other approaches, MS-HBM parcellations generalized better to new rs-fMRI and task-fMRI data from the same subjects. More specifically, MS-HBM parcellations estimated from a single rs-fMRI session (10 min) showed comparable generalizability as parcellations estimated by 2 state-of-the-art methods using 5 sessions (50 min). We also showed that behavioral phenotypes across cognition, personality, and emotion could be predicted by individual-specific network topography with modest accuracy, comparable to previous reports predicting phenotypes based on connectivity strength. Network topography estimated by MS-HBM was more effective for behavioral prediction than network size, as well as network topography estimated by other parcellation approaches. Thus, similar to connectivity strength, individual-specific network topography might also serve as a fingerprint of human behavior.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zy发布了新的文献求助10
刚刚
彭于晏应助fantastic采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
酷炫翠柏发布了新的文献求助10
1秒前
CodeCraft应助An采纳,获得10
1秒前
zhsy发布了新的文献求助10
1秒前
Jasper应助小屁孩采纳,获得10
2秒前
yyl完成签到,获得积分10
2秒前
FashionBoy应助欧阳采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
马家辉完成签到,获得积分10
3秒前
3秒前
TristanGuan发布了新的文献求助10
3秒前
朵朵与青柠完成签到,获得积分10
3秒前
上官若男应助犹豫的云朵采纳,获得10
4秒前
共享精神应助tleeny采纳,获得10
4秒前
Hello应助MAKEYF采纳,获得10
5秒前
田様应助cruise采纳,获得10
5秒前
高院士完成签到,获得积分10
5秒前
5秒前
要减肥香水完成签到,获得积分10
7秒前
平淡砖头发布了新的文献求助10
7秒前
尹哲完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
天天快乐应助缥缈含双采纳,获得10
8秒前
Lucas应助QAQ77采纳,获得10
9秒前
Hedya发布了新的文献求助10
9秒前
9秒前
汉堡包应助愉快的莹采纳,获得10
9秒前
huya完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
彭于晏应助YJX采纳,获得10
10秒前
lllll关注了科研通微信公众号
10秒前
10秒前
ding发布了新的文献求助10
10秒前
刘浩发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718656
求助须知:如何正确求助?哪些是违规求助? 5253667
关于积分的说明 15286658
捐赠科研通 4868722
什么是DOI,文献DOI怎么找? 2614394
邀请新用户注册赠送积分活动 1564266
关于科研通互助平台的介绍 1521785