Spatial Topography of Individual-Specific Cortical Networks Predicts Human Cognition, Personality, and Emotion

概化理论 功能磁共振成像 人工智能 计算机科学 认知心理学 心理学 认知 人格 连接体 模式识别(心理学) 机器学习 神经科学 功能连接 发展心理学 社会心理学
作者
Ru Kong,Jingwei Li,Csaba Orban,Mert R. Sabuncu,Hesheng Liu,Alexander Schaefer,Nanbo Sun,Xi‐Nian Zuo,Avram J. Holmes,Simon B. Eickhoff,B.T. Thomas Yeo
出处
期刊:Cerebral Cortex [Oxford University Press]
卷期号:29 (6): 2533-2551 被引量:581
标识
DOI:10.1093/cercor/bhy123
摘要

Resting-state functional magnetic resonance imaging (rs-fMRI) offers the opportunity to delineate individual-specific brain networks. A major question is whether individual-specific network topography (i.e., location and spatial arrangement) is behaviorally relevant. Here, we propose a multi-session hierarchical Bayesian model (MS-HBM) for estimating individual-specific cortical networks and investigate whether individual-specific network topography can predict human behavior. The multiple layers of the MS-HBM explicitly differentiate intra-subject (within-subject) from inter-subject (between-subject) network variability. By ignoring intra-subject variability, previous network mappings might confuse intra-subject variability for inter-subject differences. Compared with other approaches, MS-HBM parcellations generalized better to new rs-fMRI and task-fMRI data from the same subjects. More specifically, MS-HBM parcellations estimated from a single rs-fMRI session (10 min) showed comparable generalizability as parcellations estimated by 2 state-of-the-art methods using 5 sessions (50 min). We also showed that behavioral phenotypes across cognition, personality, and emotion could be predicted by individual-specific network topography with modest accuracy, comparable to previous reports predicting phenotypes based on connectivity strength. Network topography estimated by MS-HBM was more effective for behavioral prediction than network size, as well as network topography estimated by other parcellation approaches. Thus, similar to connectivity strength, individual-specific network topography might also serve as a fingerprint of human behavior.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
布达鸟完成签到,获得积分10
2秒前
2秒前
沙沙发布了新的文献求助10
2秒前
zlo完成签到,获得积分10
3秒前
woommoow完成签到,获得积分10
4秒前
有魅力荟发布了新的文献求助10
4秒前
明理念桃完成签到,获得积分10
4秒前
5秒前
脑洞疼应助16采纳,获得10
5秒前
伶俐的书白完成签到,获得积分10
5秒前
清秀龙猫完成签到 ,获得积分10
6秒前
南昌黑人完成签到,获得积分10
6秒前
7秒前
小远完成签到 ,获得积分10
8秒前
巴啦啦能量完成签到,获得积分10
8秒前
咸鱼完成签到,获得积分10
8秒前
桐桐应助微笑的鱼采纳,获得10
9秒前
9秒前
cloud完成签到,获得积分10
10秒前
cc完成签到,获得积分10
10秒前
Lyl完成签到,获得积分10
10秒前
lee完成签到 ,获得积分10
10秒前
义气的靖柏完成签到,获得积分10
11秒前
12秒前
conny完成签到,获得积分10
12秒前
chen完成签到,获得积分10
12秒前
赖建琛完成签到 ,获得积分10
13秒前
英俊的铭应助longmad采纳,获得10
13秒前
Depeng完成签到,获得积分10
13秒前
小马甲应助liuwei采纳,获得10
14秒前
15秒前
xmy完成签到,获得积分10
15秒前
黑布林大李子完成签到,获得积分0
15秒前
达达完成签到 ,获得积分10
16秒前
Yxian完成签到,获得积分10
16秒前
17秒前
熙熙发布了新的文献求助10
18秒前
19秒前
19秒前
坦率白开水完成签到,获得积分10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311429
求助须知:如何正确求助?哪些是违规求助? 2944201
关于积分的说明 8517847
捐赠科研通 2619545
什么是DOI,文献DOI怎么找? 1432421
科研通“疑难数据库(出版商)”最低求助积分说明 664655
邀请新用户注册赠送积分活动 649869