A microphysiological model of the bronchial airways reveals the interplay of mechanical and biochemical signals in bronchospasm

支气管痉挛 气道 哮喘 支气管收缩 机械转化 发病机制 收缩(语法) 免疫学 医学 细胞生物学 神经科学 化学 生物 麻醉 内科学
作者
Onur Kilic,A‐Rum Yoon,Sagar Shah,Hwan Mee Yong,Alejandro Ruiz‐Valls,Hao Chang,Reynold A. Panettieri,Stephen B. Liggett,Alfredo Quiñones‐Hinojosa,Steven S. An,Andre Levchenko
出处
期刊:Nature Biomedical Engineering [Springer Nature]
卷期号:3 (7): 532-544 被引量:28
标识
DOI:10.1038/s41551-019-0366-7
摘要

In asthma, the contraction of the airway smooth muscle and the subsequent decrease in airflow involve a poorly understood set of mechanical and biochemical events. Organ-level and molecular-scale models of the airway are frequently based on purely mechanical or biochemical considerations and do not account for physiological mechanochemical couplings. Here, we present a microphysiological model of the airway that allows for the quantitative analysis of the interactions between mechanical and biochemical signals triggered by compressive stress on epithelial cells. We show that a mechanical stimulus mimicking a bronchospastic challenge triggers the marked contraction and delayed relaxation of airway smooth muscle, and that this is mediated by the discordant expression of cyclooxygenase genes in epithelial cells and regulated by the mechanosensor and transcriptional co-activator Yes-associated protein. A mathematical model of the intercellular feedback interactions recapitulates aspects of obstructive disease of the airways, which include pathognomonic features of severe difficult-to-treat asthma. The microphysiological model could be used to investigate the mechanisms of asthma pathogenesis and to develop therapeutic strategies that disrupt the positive feedback loop that leads to persistent airway constriction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助坤坤采纳,获得10
刚刚
整齐芷文完成签到,获得积分10
1秒前
科研通AI5应助小马哥36采纳,获得10
1秒前
灵巧荆发布了新的文献求助10
2秒前
小二郎应助侦察兵采纳,获得10
2秒前
爆米花完成签到 ,获得积分10
2秒前
今后应助Evan123采纳,获得10
2秒前
凤凰之玉完成签到 ,获得积分10
3秒前
shi hui应助冬瓜炖排骨采纳,获得10
3秒前
4秒前
dyh6802发布了新的文献求助10
4秒前
冷静雅青发布了新的文献求助10
4秒前
CipherSage应助猪猪hero采纳,获得10
5秒前
领导范儿应助不凡采纳,获得30
5秒前
顾矜应助坚定的亦绿采纳,获得10
6秒前
6秒前
yu完成签到,获得积分10
6秒前
Chris完成签到,获得积分10
7秒前
cookie发布了新的文献求助10
8秒前
胖仔完成签到,获得积分10
8秒前
Chan0501完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
duxinyue发布了新的文献求助10
10秒前
汉堡转转转完成签到,获得积分10
11秒前
喵酱发布了新的文献求助30
11秒前
6666完成签到,获得积分10
11秒前
研友_VZG7GZ应助灵巧荆采纳,获得10
12秒前
wjn完成签到,获得积分10
12秒前
13秒前
竹子完成签到,获得积分10
13秒前
MAKEYF完成签到 ,获得积分10
13秒前
14秒前
Owen应助猪猪hero采纳,获得10
14秒前
15秒前
CipherSage应助海棠yiyi采纳,获得50
16秒前
Khr1stINK发布了新的文献求助10
16秒前
16秒前
脑洞疼应助卡卡采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794