An Optimization-Based Approach to Social Network Group Decision Making with an Application to Earthquake Shelter-Site Selection

中心性 偏爱 一致性(知识库) 计算机科学 群体决策 选择(遗传算法) 应急管理 领域(数学) 运筹学 关系(数据库) 风险分析(工程) 管理科学 业务 工程类 人工智能 数据挖掘 微观经济学 心理学 经济 社会心理学 数学 统计 纯数学 经济增长
作者
Hengjie Zhang,Wang Fang,Huali Tang,Yucheng Dong
出处
期刊:International Journal of Environmental Research and Public Health [MDPI AG]
卷期号:16 (15): 2740-2740 被引量:2
标识
DOI:10.3390/ijerph16152740
摘要

The social network has emerged as an essential component in group decision making (GDM) problems. Thus, this paper investigates the social network GDM (SNGDM) problem and assumes that decision makers offer their preferences utilizing additive preference relations (also called fuzzy preference relations). An optimization-based approach is devised to generate the weights of decision makers by combining two reliable resources: in-degree centrality indexes and consistency indexes. Based on the obtained weights of decision makers, the individual additive preference relations are aggregated into a collective additive preference relation. Further, the alternatives are ranked from best to worst according to the obtained collective additive preference relation. Moreover, earthquakes have occurred frequently around the world in recent years, causing great loss of life and property. Earthquake shelters offer safety, security, climate protection, and resistance to disease and ill health and are thus vital for disaster-affected people. Selection of a suitable site for locating shelters from potential alternatives is of critical importance, which can be seen as a GDM problem. When selecting a suitable earthquake shelter-site, the social trust relationships among disaster management experts should not be ignored. To this end, the proposed SNGDM model is applied to evaluate and select earthquake shelter-sites to show its effectiveness. In summary, this paper constructs a novel GDM framework by taking the social trust relationship into account, which can provide a scientific basis for public emergency management in the major disasters field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
友好飞松完成签到,获得积分10
刚刚
量子发布了新的文献求助10
刚刚
SciGPT应助zhaonana采纳,获得10
刚刚
刚刚
机智又蓝完成签到 ,获得积分10
1秒前
1秒前
深情安青应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得30
2秒前
2秒前
2秒前
古德方完成签到,获得积分10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
11应助科研通管家采纳,获得20
2秒前
Fred Guan应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得30
3秒前
浅尝离白应助科研通管家采纳,获得30
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
领导范儿应助去糖少冰采纳,获得10
5秒前
热情的初兰完成签到 ,获得积分10
6秒前
6秒前
zmz完成签到,获得积分10
6秒前
WWXWWX应助忧郁若菱采纳,获得10
6秒前
不配.应助就是电话采纳,获得30
7秒前
xx完成签到,获得积分10
8秒前
9秒前
9秒前
Jrssion发布了新的文献求助10
9秒前
星辰大海应助VLH采纳,获得10
10秒前
酷酷发布了新的文献求助10
10秒前
10秒前
11秒前
wangke发布了新的文献求助10
12秒前
充电宝应助Mzhao采纳,获得10
12秒前
wdx发布了新的文献求助10
12秒前
李牧发布了新的文献求助10
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145621
求助须知:如何正确求助?哪些是违规求助? 2797097
关于积分的说明 7822848
捐赠科研通 2453435
什么是DOI,文献DOI怎么找? 1305652
科研通“疑难数据库(出版商)”最低求助积分说明 627514
版权声明 601469