What do centrality measures measure in psychological networks?

中心性 中间性中心性 卡茨中心性 背景(考古学) 心理学 网络可控性 网络理论 亲密度 节点(物理) 构造(python库) 社会心理学 计算机科学 数学 统计 生物 工程类 数学分析 古生物学 程序设计语言 结构工程
作者
Laura F. Bringmann,Timon Elmer,Sacha Epskamp,Robert W. Krause,David Schoch,Marieke Wichers,Johanna T. W. Wigman,Evelien Snippe
出处
期刊:Journal of Abnormal Psychology [American Psychological Association]
卷期号:128 (8): 892-903 被引量:836
标识
DOI:10.1037/abn0000446
摘要

Centrality indices are a popular tool to analyze structural aspects of psychological networks. As centrality indices were originally developed in the context of social networks, it is unclear to what extent these indices are suitable in a psychological network context. In this article we critically examine several issues with the use of the most popular centrality indices in psychological networks: degree, betweenness, and closeness centrality. We show that problems with centrality indices discussed in the social network literature also apply to the psychological networks. Assumptions underlying centrality indices, such as presence of a flow and shortest paths, may not correspond with a general theory of how psychological variables relate to one another. Furthermore, the assumptions of node distinctiveness and node exchangeability may not hold in psychological networks. We conclude that, for psychological networks, betweenness and closeness centrality seem especially unsuitable as measures of node importance. We therefore suggest three ways forward: (a) using centrality measures that are tailored to the psychological network context, (b) reconsidering existing measures of importance used in statistical models underlying psychological networks, and (c) discarding the concept of node centrality entirely. Foremost, we argue that one has to make explicit what one means when one states that a node is central, and what assumptions the centrality measure of choice entails, to make sure that there is a match between the process under study and the centrality measure that is used. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dfhbdfhfhfgsd发布了新的文献求助10
1秒前
早茶可口完成签到,获得积分10
4秒前
万能图书馆应助pathway采纳,获得10
5秒前
小马甲应助高兴吐司采纳,获得10
7秒前
老实莫言发布了新的文献求助10
7秒前
8秒前
xhy完成签到,获得积分20
10秒前
脑洞疼应助忐忑的阑香采纳,获得10
13秒前
13秒前
郭panda发布了新的文献求助30
14秒前
啦啦啦完成签到,获得积分10
14秒前
14秒前
CipherSage应助zoe_zzz采纳,获得10
14秒前
WAM发布了新的文献求助10
17秒前
17秒前
老实莫言完成签到,获得积分10
18秒前
端庄幻桃完成签到 ,获得积分10
19秒前
轻风发布了新的文献求助10
19秒前
wanci应助CDI和LIB采纳,获得10
19秒前
20秒前
Dawn发布了新的文献求助10
20秒前
xianxian发布了新的文献求助10
22秒前
小马甲应助感动的汉堡采纳,获得10
23秒前
汉堡包应助爬不起来采纳,获得10
23秒前
DONGLK完成签到,获得积分10
24秒前
科研通AI2S应助WAM采纳,获得10
26秒前
Green发布了新的文献求助10
26秒前
26秒前
英俊的文龙完成签到 ,获得积分10
27秒前
lalala完成签到,获得积分10
28秒前
30秒前
Wei应助圆圆的波仔采纳,获得10
30秒前
李健的小迷弟应助沐姆采纳,获得30
32秒前
有人应助lalala采纳,获得10
32秒前
田様应助Ying采纳,获得20
32秒前
33秒前
33秒前
34秒前
文竹不对称耶完成签到,获得积分10
34秒前
Owen应助wyqking采纳,获得10
35秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736145
求助须知:如何正确求助?哪些是违规求助? 3279889
关于积分的说明 10017680
捐赠科研通 2996573
什么是DOI,文献DOI怎么找? 1644172
邀请新用户注册赠送积分活动 781816
科研通“疑难数据库(出版商)”最低求助积分说明 749475