What do centrality measures measure in psychological networks?

中心性 中间性中心性 卡茨中心性 背景(考古学) 心理学 网络可控性 网络理论 亲密度 节点(物理) 构造(python库) 社会心理学 计算机科学 数学 统计 生物 工程类 数学分析 古生物学 程序设计语言 结构工程
作者
Laura F. Bringmann,Timon Elmer,Sacha Epskamp,Robert W. Krause,David Schoch,Marieke Wichers,Johanna T. W. Wigman,Evelien Snippe
出处
期刊:Journal of Abnormal Psychology [American Psychological Association]
卷期号:128 (8): 892-903 被引量:958
标识
DOI:10.1037/abn0000446
摘要

Centrality indices are a popular tool to analyze structural aspects of psychological networks. As centrality indices were originally developed in the context of social networks, it is unclear to what extent these indices are suitable in a psychological network context. In this article we critically examine several issues with the use of the most popular centrality indices in psychological networks: degree, betweenness, and closeness centrality. We show that problems with centrality indices discussed in the social network literature also apply to the psychological networks. Assumptions underlying centrality indices, such as presence of a flow and shortest paths, may not correspond with a general theory of how psychological variables relate to one another. Furthermore, the assumptions of node distinctiveness and node exchangeability may not hold in psychological networks. We conclude that, for psychological networks, betweenness and closeness centrality seem especially unsuitable as measures of node importance. We therefore suggest three ways forward: (a) using centrality measures that are tailored to the psychological network context, (b) reconsidering existing measures of importance used in statistical models underlying psychological networks, and (c) discarding the concept of node centrality entirely. Foremost, we argue that one has to make explicit what one means when one states that a node is central, and what assumptions the centrality measure of choice entails, to make sure that there is a match between the process under study and the centrality measure that is used. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
wanglejia完成签到,获得积分10
6秒前
cfplhys完成签到,获得积分10
9秒前
小马甲应助Judson采纳,获得10
10秒前
柚C美式完成签到 ,获得积分10
10秒前
10秒前
Oay完成签到,获得积分10
13秒前
13秒前
大个应助细心黎昕采纳,获得10
14秒前
le123zxc完成签到,获得积分10
14秒前
风趣的卿完成签到,获得积分20
17秒前
那只幸运的小肥羊完成签到,获得积分10
17秒前
啦啦啦发布了新的文献求助10
18秒前
皮皮虾完成签到 ,获得积分10
21秒前
认真的傲柏完成签到,获得积分20
21秒前
22秒前
矜戏文完成签到 ,获得积分10
22秒前
24秒前
啦啦啦完成签到,获得积分10
25秒前
26秒前
Owen应助邱仇天采纳,获得10
28秒前
沐兮发布了新的文献求助10
29秒前
Xxx完成签到,获得积分10
30秒前
GGBOND完成签到,获得积分10
32秒前
Li应助moheisheng采纳,获得10
34秒前
沙克几十块完成签到,获得积分0
35秒前
万幸鹿完成签到,获得积分10
35秒前
慢歌完成签到 ,获得积分10
36秒前
张德帅完成签到,获得积分10
37秒前
此去经年完成签到 ,获得积分10
38秒前
朵拉A梦完成签到,获得积分10
38秒前
蓝莓贝果完成签到 ,获得积分10
44秒前
45秒前
Developing_human完成签到,获得积分10
45秒前
Yangyang完成签到,获得积分10
46秒前
橙子完成签到 ,获得积分10
46秒前
激昂的梦山完成签到 ,获得积分10
47秒前
Akashi完成签到,获得积分10
47秒前
哈哈发布了新的文献求助10
48秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5223727
求助须知:如何正确求助?哪些是违规求助? 4395985
关于积分的说明 13682413
捐赠科研通 4260093
什么是DOI,文献DOI怎么找? 2337728
邀请新用户注册赠送积分活动 1335112
关于科研通互助平台的介绍 1290770