中心性
中间性中心性
卡茨中心性
背景(考古学)
心理学
网络可控性
网络理论
亲密度
节点(物理)
构造(python库)
社会心理学
计算机科学
数学
统计
生物
工程类
数学分析
古生物学
程序设计语言
结构工程
作者
Laura F. Bringmann,Timon Elmer,Sacha Epskamp,Robert W. Krause,David Schoch,Marieke Wichers,Johanna T. W. Wigman,Evelien Snippe
摘要
Centrality indices are a popular tool to analyze structural aspects of psychological networks. As centrality indices were originally developed in the context of social networks, it is unclear to what extent these indices are suitable in a psychological network context. In this article we critically examine several issues with the use of the most popular centrality indices in psychological networks: degree, betweenness, and closeness centrality. We show that problems with centrality indices discussed in the social network literature also apply to the psychological networks. Assumptions underlying centrality indices, such as presence of a flow and shortest paths, may not correspond with a general theory of how psychological variables relate to one another. Furthermore, the assumptions of node distinctiveness and node exchangeability may not hold in psychological networks. We conclude that, for psychological networks, betweenness and closeness centrality seem especially unsuitable as measures of node importance. We therefore suggest three ways forward: (a) using centrality measures that are tailored to the psychological network context, (b) reconsidering existing measures of importance used in statistical models underlying psychological networks, and (c) discarding the concept of node centrality entirely. Foremost, we argue that one has to make explicit what one means when one states that a node is central, and what assumptions the centrality measure of choice entails, to make sure that there is a match between the process under study and the centrality measure that is used. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
科研通智能强力驱动
Strongly Powered by AbleSci AI