石墨烯
灵活性(工程)
晶体管
微电极
材料科学
多电极阵列
场效应晶体管
噪音(视频)
神经活动
计算机科学
接口(物质)
纳米技术
信号(编程语言)
光电子学
电气工程
神经科学
电极
电压
工程类
化学
人工智能
复合材料
统计
物理化学
数学
毛细管作用
程序设计语言
图像(数学)
毛细管数
生物
作者
Benno M. Blaschke,Núria Tort‐Colet,Anton Guimerà‐Brunet,Julia F. Weinert,Lionel Rousseau,Axel Heimann,Simon Drieschner,Oliver Kempski,Rosa Villa,María V. Sánchez-Vives,José A. Garrido
出处
期刊:2D materials
[IOP Publishing]
日期:2017-02-24
卷期号:4 (2): 025040-025040
被引量:77
标识
DOI:10.1088/2053-1583/aa5eff
摘要
Establishing a reliable communication interface between the brain and electronic devices is of paramount importance for exploiting the full potential of neural prostheses. Current microelectrode technologies for recording electrical activity, however, evidence important shortcomings, e.g. challenging high density integration. Solution-gated field-effect transistors (SGFETs), on the other hand, could overcome these shortcomings if a suitable transistor material were available. Graphene is particularly attractive due to its biocompatibility, chemical stability, flexibility, low intrinsic electronic noise and high charge carrier mobilities. Here, we report on the use of an array of flexible graphene SGFETs for recording spontaneous slow waves, as well as visually evoked and also pre-epileptic activity in vivo in rats. The flexible array of graphene SGFETs allows mapping brain electrical activity with excellent signal-to-noise ratio (SNR), suggesting that this technology could lay the foundation for a future generation of in vivo recording implants.
科研通智能强力驱动
Strongly Powered by AbleSci AI