亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Incentive Design in Peer Review: Rating and Repeated Endogenous Matching

逆向选择 匹配(统计) 道德风险 计算机科学 激励 私人信息检索 质量(理念) 风险分析(工程) 机构设计 众包 计算机安全 微观经济学 精算学 业务 经济 万维网 统计 认识论 哲学 数学
作者
Yuanzhang Xiao,Florian Dörfler,Mihaela van der Schaar
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:6 (4): 898-908 被引量:10
标识
DOI:10.1109/tnse.2018.2877578
摘要

Peer review (e.g., grading assignments in Massive Open Online Courses (MOOCs), academic paper review) is an effective and scalable method to evaluate the products (e.g., assignments, papers) of a large number of agents when the number of dedicated reviewing experts (e.g., teaching assistants, editors) is limited. Peer review poses two key challenges: 1) identifying the reviewers' intrinsic capabilities (i.e., adverse selection) and 2) incentivizing the reviewers to exert high effort (i.e., moral hazard). Some works in mechanism design address pure adverse selection using one-shot matching rules, and pure moral hazard was addressed in repeated games with exogenously given and fixed matching rules. However, in peer review systems exhibiting both adverse selection and moral hazard, one-shot or exogenous matching rules do not link agents' current behavior with future matches and future payoffs, and as we prove, will induce myopic behavior (i.e., exerting the lowest effort) resulting in the lowest review quality. In this paper, we propose for the first time a solution that simultaneously solves adverse selection and moral hazard. Our solution exploits the repeated interactions of agents, utilizes ratings to summarize agents' past review quality, and designs matching rules that endogenously depend on agents' ratings. Our proposed matching rules are easy to implement and require no knowledge about agents' private information (e.g., their benefit and cost functions). Yet, they are effective in guiding the system to an equilibrium where the agents are incentivized to exert high effort and receive ratings that precisely reflect their review quality. Using several illustrative examples, we quantify the significant performance gains obtained by our proposed mechanism as compared to existing one-shot or exogenous matching rules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
7秒前
Umair发布了新的文献求助10
7秒前
Simon发布了新的文献求助10
10秒前
Akim应助Umair采纳,获得10
16秒前
舒心豪英完成签到 ,获得积分10
28秒前
哭泣青烟完成签到 ,获得积分10
38秒前
脑洞疼应助远方采纳,获得10
46秒前
充电宝应助木四点采纳,获得10
1分钟前
Akim应助LPH01采纳,获得30
1分钟前
1分钟前
我是老大应助不安映秋采纳,获得10
1分钟前
sui应助科研通管家采纳,获得10
1分钟前
木四点发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
LPH01发布了新的文献求助30
1分钟前
Umair发布了新的文献求助10
1分钟前
1分钟前
汪鸡毛完成签到 ,获得积分10
1分钟前
不安映秋发布了新的文献求助10
1分钟前
1分钟前
李爱国应助Umair采纳,获得10
1分钟前
知性的致远完成签到,获得积分10
1分钟前
2分钟前
思源应助既然采纳,获得10
2分钟前
林非鹿完成签到,获得积分10
2分钟前
夏瑞完成签到 ,获得积分10
2分钟前
3分钟前
慕青应助青儿采纳,获得10
3分钟前
3分钟前
jinyy发布了新的文献求助10
3分钟前
Anna Jenna发布了新的文献求助10
3分钟前
3分钟前
3分钟前
jinyy完成签到,获得积分20
3分钟前
Anna Jenna完成签到,获得积分10
3分钟前
青儿发布了新的文献求助10
3分钟前
希望天下0贩的0应助jinyy采纳,获得10
3分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142672
求助须知:如何正确求助?哪些是违规求助? 2793563
关于积分的说明 7806899
捐赠科研通 2449789
什么是DOI,文献DOI怎么找? 1303477
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601314