Incentive Design in Peer Review: Rating and Repeated Endogenous Matching

逆向选择 匹配(统计) 道德风险 计算机科学 激励 私人信息检索 质量(理念) 风险分析(工程) 机构设计 众包 计算机安全 微观经济学 精算学 业务 经济 万维网 统计 认识论 哲学 数学
作者
Yuanzhang Xiao,Florian Dörfler,Mihaela van der Schaar
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:6 (4): 898-908 被引量:10
标识
DOI:10.1109/tnse.2018.2877578
摘要

Peer review (e.g., grading assignments in Massive Open Online Courses (MOOCs), academic paper review) is an effective and scalable method to evaluate the products (e.g., assignments, papers) of a large number of agents when the number of dedicated reviewing experts (e.g., teaching assistants, editors) is limited. Peer review poses two key challenges: 1) identifying the reviewers' intrinsic capabilities (i.e., adverse selection) and 2) incentivizing the reviewers to exert high effort (i.e., moral hazard). Some works in mechanism design address pure adverse selection using one-shot matching rules, and pure moral hazard was addressed in repeated games with exogenously given and fixed matching rules. However, in peer review systems exhibiting both adverse selection and moral hazard, one-shot or exogenous matching rules do not link agents' current behavior with future matches and future payoffs, and as we prove, will induce myopic behavior (i.e., exerting the lowest effort) resulting in the lowest review quality. In this paper, we propose for the first time a solution that simultaneously solves adverse selection and moral hazard. Our solution exploits the repeated interactions of agents, utilizes ratings to summarize agents' past review quality, and designs matching rules that endogenously depend on agents' ratings. Our proposed matching rules are easy to implement and require no knowledge about agents' private information (e.g., their benefit and cost functions). Yet, they are effective in guiding the system to an equilibrium where the agents are incentivized to exert high effort and receive ratings that precisely reflect their review quality. Using several illustrative examples, we quantify the significant performance gains obtained by our proposed mechanism as compared to existing one-shot or exogenous matching rules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
入江发布了新的文献求助10
刚刚
1秒前
1秒前
浮游应助烟雨任平生采纳,获得10
1秒前
乐乐应助王修强采纳,获得10
1秒前
Jasper应助abby123采纳,获得10
1秒前
2秒前
小刘小可爱完成签到,获得积分10
2秒前
小鱼儿发布了新的文献求助10
2秒前
ccCherub发布了新的文献求助10
2秒前
solar发布了新的文献求助10
2秒前
坦率灵槐发布了新的文献求助10
2秒前
3秒前
yhh发布了新的文献求助10
3秒前
beibei完成签到,获得积分10
3秒前
Sara完成签到 ,获得积分10
4秒前
cherry发布了新的文献求助10
4秒前
安诗柳完成签到,获得积分10
4秒前
瑕灬完成签到,获得积分10
4秒前
ustina发布了新的文献求助10
4秒前
灵巧绮晴完成签到,获得积分10
5秒前
5秒前
诚心溪灵发布了新的文献求助10
5秒前
6秒前
6秒前
高兴香彤发布了新的文献求助10
6秒前
赫连紫发布了新的文献求助10
6秒前
汉堡包应助zhangyaoyang采纳,获得10
6秒前
6秒前
幸运小狗完成签到,获得积分20
6秒前
充电宝应助宁静致远采纳,获得10
7秒前
Xhhhhhh完成签到,获得积分10
7秒前
Npccc发布了新的文献求助10
7秒前
小二郎应助琉璃采纳,获得10
7秒前
浮游应助王纪钧采纳,获得10
7秒前
核桃应助otaro采纳,获得30
8秒前
liu完成签到,获得积分10
8秒前
Gasol发布了新的文献求助10
8秒前
慕青应助丁点采纳,获得10
8秒前
solar完成签到,获得积分10
9秒前
高分求助中
美国药典 2000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5239936
求助须知:如何正确求助?哪些是违规求助? 4407214
关于积分的说明 13717567
捐赠科研通 4275773
什么是DOI,文献DOI怎么找? 2346169
邀请新用户注册赠送积分活动 1343299
关于科研通互助平台的介绍 1301344