Incentive Design in Peer Review: Rating and Repeated Endogenous Matching

逆向选择 匹配(统计) 道德风险 计算机科学 激励 私人信息检索 质量(理念) 风险分析(工程) 机构设计 众包 计算机安全 微观经济学 精算学 业务 经济 万维网 统计 认识论 哲学 数学
作者
Yuanzhang Xiao,Florian Dörfler,Mihaela van der Schaar
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:6 (4): 898-908 被引量:10
标识
DOI:10.1109/tnse.2018.2877578
摘要

Peer review (e.g., grading assignments in Massive Open Online Courses (MOOCs), academic paper review) is an effective and scalable method to evaluate the products (e.g., assignments, papers) of a large number of agents when the number of dedicated reviewing experts (e.g., teaching assistants, editors) is limited. Peer review poses two key challenges: 1) identifying the reviewers' intrinsic capabilities (i.e., adverse selection) and 2) incentivizing the reviewers to exert high effort (i.e., moral hazard). Some works in mechanism design address pure adverse selection using one-shot matching rules, and pure moral hazard was addressed in repeated games with exogenously given and fixed matching rules. However, in peer review systems exhibiting both adverse selection and moral hazard, one-shot or exogenous matching rules do not link agents' current behavior with future matches and future payoffs, and as we prove, will induce myopic behavior (i.e., exerting the lowest effort) resulting in the lowest review quality. In this paper, we propose for the first time a solution that simultaneously solves adverse selection and moral hazard. Our solution exploits the repeated interactions of agents, utilizes ratings to summarize agents' past review quality, and designs matching rules that endogenously depend on agents' ratings. Our proposed matching rules are easy to implement and require no knowledge about agents' private information (e.g., their benefit and cost functions). Yet, they are effective in guiding the system to an equilibrium where the agents are incentivized to exert high effort and receive ratings that precisely reflect their review quality. Using several illustrative examples, we quantify the significant performance gains obtained by our proposed mechanism as compared to existing one-shot or exogenous matching rules.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
荔枝不白发布了新的文献求助30
刚刚
干净寻冬完成签到,获得积分10
1秒前
xx发布了新的文献求助10
1秒前
芝士雪豹关注了科研通微信公众号
1秒前
淡然冬灵完成签到,获得积分10
1秒前
江伊发布了新的文献求助10
2秒前
Lucas应助nofear采纳,获得10
3秒前
小小怪下士应助和谐如容采纳,获得10
4秒前
popvich应助科研老白采纳,获得40
4秒前
月月应助DDDD采纳,获得10
5秒前
科研通AI6应助zhouyms采纳,获得10
5秒前
执着书南完成签到 ,获得积分10
6秒前
6秒前
ZFLCZ关注了科研通微信公众号
6秒前
彭于晏应助不吃青菜采纳,获得10
6秒前
7秒前
8秒前
Jasper应助芽芽乐采纳,获得10
9秒前
9秒前
10秒前
搜集达人应助江伊采纳,获得10
11秒前
baihehuakai发布了新的文献求助10
11秒前
顾矜应助星球日记采纳,获得10
11秒前
田様应助隐形的星月采纳,获得10
11秒前
科研通AI6应助ab采纳,获得10
12秒前
自觉馒头发布了新的文献求助10
13秒前
13秒前
动听的老鼠完成签到,获得积分10
14秒前
wsmmmmm发布了新的文献求助10
14秒前
even发布了新的文献求助10
14秒前
桐桐应助桂电马旺采纳,获得10
15秒前
15秒前
范诚完成签到,获得积分10
15秒前
15秒前
芝士雪豹发布了新的文献求助10
16秒前
QIAN完成签到,获得积分20
16秒前
16秒前
16秒前
LC发布了新的文献求助10
17秒前
18秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588315
求助须知:如何正确求助?哪些是违规求助? 4671384
关于积分的说明 14787042
捐赠科研通 4624969
什么是DOI,文献DOI怎么找? 2531757
邀请新用户注册赠送积分活动 1500349
关于科研通互助平台的介绍 1468276