清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Incentive Design in Peer Review: Rating and Repeated Endogenous Matching

逆向选择 匹配(统计) 道德风险 计算机科学 激励 私人信息检索 质量(理念) 风险分析(工程) 机构设计 众包 计算机安全 微观经济学 精算学 业务 经济 万维网 统计 认识论 哲学 数学
作者
Yuanzhang Xiao,Florian Dörfler,Mihaela van der Schaar
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:6 (4): 898-908 被引量:10
标识
DOI:10.1109/tnse.2018.2877578
摘要

Peer review (e.g., grading assignments in Massive Open Online Courses (MOOCs), academic paper review) is an effective and scalable method to evaluate the products (e.g., assignments, papers) of a large number of agents when the number of dedicated reviewing experts (e.g., teaching assistants, editors) is limited. Peer review poses two key challenges: 1) identifying the reviewers' intrinsic capabilities (i.e., adverse selection) and 2) incentivizing the reviewers to exert high effort (i.e., moral hazard). Some works in mechanism design address pure adverse selection using one-shot matching rules, and pure moral hazard was addressed in repeated games with exogenously given and fixed matching rules. However, in peer review systems exhibiting both adverse selection and moral hazard, one-shot or exogenous matching rules do not link agents' current behavior with future matches and future payoffs, and as we prove, will induce myopic behavior (i.e., exerting the lowest effort) resulting in the lowest review quality. In this paper, we propose for the first time a solution that simultaneously solves adverse selection and moral hazard. Our solution exploits the repeated interactions of agents, utilizes ratings to summarize agents' past review quality, and designs matching rules that endogenously depend on agents' ratings. Our proposed matching rules are easy to implement and require no knowledge about agents' private information (e.g., their benefit and cost functions). Yet, they are effective in guiding the system to an equilibrium where the agents are incentivized to exert high effort and receive ratings that precisely reflect their review quality. Using several illustrative examples, we quantify the significant performance gains obtained by our proposed mechanism as compared to existing one-shot or exogenous matching rules.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
非洲大象完成签到,获得积分10
19秒前
精明寒松完成签到 ,获得积分10
43秒前
111完成签到 ,获得积分10
54秒前
量子星尘发布了新的文献求助10
57秒前
1分钟前
俏皮小笼包完成签到,获得积分10
1分钟前
1分钟前
SUNNYONE完成签到 ,获得积分10
1分钟前
阿洁发布了新的文献求助10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
小蘑菇应助科研通管家采纳,获得10
1分钟前
momo完成签到,获得积分10
1分钟前
1分钟前
lyj完成签到 ,获得积分0
2分钟前
2分钟前
Ava应助ZHY采纳,获得10
2分钟前
研友_alan完成签到 ,获得积分10
2分钟前
紫焰完成签到 ,获得积分10
3分钟前
无悔完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
JamesPei应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
爆米花应助科研通管家采纳,获得10
3分钟前
3分钟前
年轻绮波完成签到,获得积分10
3分钟前
时老完成签到 ,获得积分10
4分钟前
闲人颦儿完成签到,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
笔墨纸砚完成签到 ,获得积分10
6分钟前
阿洁完成签到,获得积分10
6分钟前
阿洁发布了新的文献求助10
6分钟前
复杂白凡应助阿洁采纳,获得10
6分钟前
菠萝包完成签到 ,获得积分10
6分钟前
6分钟前
科研通AI6应助Maomaojiangjiang采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5529358
求助须知:如何正确求助?哪些是违规求助? 4618481
关于积分的说明 14562694
捐赠科研通 4557545
什么是DOI,文献DOI怎么找? 2497604
邀请新用户注册赠送积分活动 1477776
关于科研通互助平台的介绍 1449269