Incentive Design in Peer Review: Rating and Repeated Endogenous Matching

逆向选择 匹配(统计) 道德风险 计算机科学 激励 私人信息检索 质量(理念) 风险分析(工程) 机构设计 众包 计算机安全 微观经济学 精算学 业务 经济 万维网 哲学 统计 数学 认识论
作者
Yuanzhang Xiao,Florian Dörfler,Mihaela van der Schaar
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:6 (4): 898-908 被引量:10
标识
DOI:10.1109/tnse.2018.2877578
摘要

Peer review (e.g., grading assignments in Massive Open Online Courses (MOOCs), academic paper review) is an effective and scalable method to evaluate the products (e.g., assignments, papers) of a large number of agents when the number of dedicated reviewing experts (e.g., teaching assistants, editors) is limited. Peer review poses two key challenges: 1) identifying the reviewers' intrinsic capabilities (i.e., adverse selection) and 2) incentivizing the reviewers to exert high effort (i.e., moral hazard). Some works in mechanism design address pure adverse selection using one-shot matching rules, and pure moral hazard was addressed in repeated games with exogenously given and fixed matching rules. However, in peer review systems exhibiting both adverse selection and moral hazard, one-shot or exogenous matching rules do not link agents' current behavior with future matches and future payoffs, and as we prove, will induce myopic behavior (i.e., exerting the lowest effort) resulting in the lowest review quality. In this paper, we propose for the first time a solution that simultaneously solves adverse selection and moral hazard. Our solution exploits the repeated interactions of agents, utilizes ratings to summarize agents' past review quality, and designs matching rules that endogenously depend on agents' ratings. Our proposed matching rules are easy to implement and require no knowledge about agents' private information (e.g., their benefit and cost functions). Yet, they are effective in guiding the system to an equilibrium where the agents are incentivized to exert high effort and receive ratings that precisely reflect their review quality. Using several illustrative examples, we quantify the significant performance gains obtained by our proposed mechanism as compared to existing one-shot or exogenous matching rules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马尔尼菲蓝状菌完成签到,获得积分10
1秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
4秒前
6秒前
abcdefg发布了新的文献求助10
7秒前
科研通AI6应助mjhh采纳,获得10
8秒前
Yam发布了新的文献求助10
9秒前
苒苒完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
aqaq完成签到,获得积分10
12秒前
聪明伊完成签到,获得积分10
13秒前
song发布了新的文献求助10
13秒前
Sera完成签到,获得积分10
13秒前
13秒前
13秒前
Dr大壮完成签到,获得积分10
13秒前
JJMM发布了新的文献求助10
16秒前
充电宝应助song采纳,获得10
17秒前
魔幻安青完成签到,获得积分10
17秒前
陬廿六发布了新的文献求助10
18秒前
Wangxia发布了新的文献求助10
18秒前
19秒前
20秒前
谦让之云完成签到,获得积分10
20秒前
21秒前
NexusExplorer应助lh采纳,获得10
21秒前
22秒前
量子星尘发布了新的文献求助30
23秒前
bkagyin应助As故采纳,获得30
24秒前
27秒前
坏桔桔发布了新的文献求助10
27秒前
ch发布了新的文献求助10
27秒前
29秒前
思源应助JJMM采纳,获得10
29秒前
Esther发布了新的文献求助30
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4914910
求助须知:如何正确求助?哪些是违规求助? 4189107
关于积分的说明 13009918
捐赠科研通 3958099
什么是DOI,文献DOI怎么找? 2170084
邀请新用户注册赠送积分活动 1188316
关于科研通互助平台的介绍 1096015