Development and Validation of a 18F-FDG PET/CT-Based Clinical Prediction Model for Estimating Malignancy in Solid Pulmonary Nodules Based on a Population With High Prevalence of Malignancy

医学 恶性肿瘤 肺癌 正电子发射断层摄影术 放射科 实体瘤 核医学 人口 癌症 内科学 环境卫生
作者
Haoyue Guo,Jun‐Tao Lin,Haohua Huang,Yuan Gao,Mei-Ru Yan,Ming Sun,Weiping Xu,Hong‐Hong Yan,Wen‐Zhao Zhong,Xuening Yang
出处
期刊:Clinical Lung Cancer [Elsevier]
卷期号:21 (1): 47-55 被引量:14
标识
DOI:10.1016/j.cllc.2019.07.014
摘要

To develop a prediction model based on 18F-fludeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) for solid pulmonary nodules (SPNs) with high malignant probability.We retrospectively reviewed the records of CT-undetermined SPNs, which were further evaluated by PET/CT between January 2008 and December 2015. A total of 312 cases were included as a training set and 159 as a validation set. Logistic regression was applied to determine independent predictors, and a mathematical model was deduced. The area under the receiver operating characteristic curve (AUC) was compared to other models. Model fitness was assessed based on the American College of Chest Physicians guidelines.There were 215 (68.9%) and 127 (79.9%) malignant lesions in the training and validation sets, respectively. Eight independent predictors were identified: age [odds ratio (OR) = 1.030], male gender (OR = 0.268), smoking history (OR = 2.719), lesion diameter (OR = 1.067), spiculation (OR = 2.530), lobulation (OR = 2.614), cavity (OR = 2.847), and standardized maximum uptake value of SPNs (OR = 1.229). Our AUCs (training set, 0.858; validation set, 0.809) was better than those of previous models (Mayo: 0.685, P = .0061; Peking University People's Hospital: 0.646, P = .0180; Herder: 0.708, P = .0203; Zhejiang University: 0.757, P = .0699). The C index of the nomogram was 0.858. Our model reduced the diagnosis of indeterminate nodules (26.4% vs. 79.2%, 53.5%, 39.6%, and 34.0%, respectively) while improved sensitivity (81.3% vs. 16.4%, 49.2%, 62.5%, and 68.0%, respectively) and accuracy (65.4% vs. 16.4%, 39.6%, 52.8%, and 58.5%, respectively).Our model could permit accurate diagnoses and may be recommended to identify malignant SPNs with high malignant probability, as our data pertain to a very high-prevalence cohort only.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助午夜煎饼采纳,获得10
刚刚
夸夸我发布了新的文献求助10
1秒前
桐桐应助愉快十八采纳,获得10
2秒前
unicorn驳回了Ava应助
3秒前
怪胎完成签到,获得积分10
3秒前
邱寒烟aa完成签到 ,获得积分0
4秒前
Asma_2104完成签到,获得积分10
4秒前
EddyLalala完成签到,获得积分10
5秒前
多喝开开完成签到,获得积分20
6秒前
沉静幻天完成签到 ,获得积分10
6秒前
Seldomyg完成签到 ,获得积分10
8秒前
Akim应助foxp3采纳,获得10
9秒前
12秒前
忧郁的研完成签到,获得积分10
14秒前
qq发布了新的文献求助10
14秒前
14秒前
xmy完成签到,获得积分10
16秒前
Ldd发布了新的文献求助10
16秒前
Amb1tionG完成签到,获得积分10
17秒前
17秒前
kyt0001完成签到 ,获得积分10
17秒前
19秒前
20秒前
22秒前
欧皇完成签到,获得积分20
22秒前
sandy发布了新的文献求助10
24秒前
petrichor应助helpme采纳,获得10
25秒前
阿喵完成签到,获得积分10
27秒前
27秒前
李在猛完成签到 ,获得积分10
28秒前
失眠班完成签到,获得积分10
30秒前
CodeCraft应助sandy采纳,获得10
31秒前
韦老虎完成签到,获得积分10
33秒前
叮当发布了新的文献求助10
33秒前
34秒前
40秒前
SciKid524完成签到 ,获得积分10
40秒前
40秒前
是个i人完成签到,获得积分10
41秒前
shencheng发布了新的文献求助10
42秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3236154
求助须知:如何正确求助?哪些是违规求助? 2881895
关于积分的说明 8224139
捐赠科研通 2549869
什么是DOI,文献DOI怎么找? 1378681
科研通“疑难数据库(出版商)”最低求助积分说明 648444
邀请新用户注册赠送积分活动 623884