纳米医学
多重耐药
药品
三元运算
材料科学
药物输送
药理学
三元络合物
纳米技术
生物医学工程
癌症研究
抗药性
医学
纳米颗粒
计算机科学
化学
生物
有机化学
微生物学
酶
程序设计语言
作者
Ling Che,Zhirui Liu,Dong Wang,Chunmei Xu,Chengyuan Zhang,Jia Meng,Jun Zheng,Hongfeng Yuan,Guoqiang Zhao,Xing Zhou
标识
DOI:10.1016/j.actbio.2019.07.033
摘要
Nanomedicine with programmed drug release can give full play to the synergistic effect of multi-component system in complicated tumor environment. However, the construction of these programmed drug delivery systems often depends on the sophisticated materials design and synthesis. In this study, we successfully designed an indomethacin (IND)-mediated ternary complex system based on a PEG cleavable polyethyleneimine (PEI), indomethacin (IND) and benzene ring containing chemotherapeutic drugs (such as paclitaxel (PTX), doxorubicin and docetaxel). Based on the difference of hydrophobicity in these components, these components were one-pot self-assembled into drug-loaded IND mediated PEGylation cleavable nanoassemblies (IPCNs) in multilayer structure. In drug-loaded IPCNs, PEG fragments, PEI/IND, and chemotherapeutic drug were respectively distributed from the out layer to core of nanomedicine. When drug-loaded IPCNs reached tumor site through EPR effect, the PEG fragment would firstly responsively release to the acidic tumor microenvironment to expose the intermediate layer of drug-loaded IPCNs that composed by mixture of PEI and IND for increasing the surface potential to promote the uptake by tumor cells. After entering cells, IND would be released faster than chemotherapeutic drug encapsulated in core to efficiently inhibit the expression of multidrug resistance protein 1 to reverse MDR of tumor cells before chemotherapeutic drug releasing. Contributed by the staged responsively releasing of PEG fragments, IND and encapsulated chemotherapeutic drug, the drug-loaded IPCNs exhibited a superior antitumor efficacy against A549/MDR tumor cells both in vitro and in vivo. STATEMENT OF SIGNIFICANCE: The way to develop programmed released drug delivery system is commonly relied on complicated material design and synthesis. Herein, under the computer-assist design, we successfully designed a ternary complex derived from indomethacin (IND), paclitaxel (PTX) and a pH-responsive PEGylated polyethyleneimine (PEG-s-PEI), and employed this ternary complex to successfully prepare a high drug loading and multilayer structured nanomedicine of PTX (PTX IPCNs). Contribute by the different location of PTX, IND and PEG-s-PEI in PTX IPCNs, PEG fragments, IND and PTX molecules could programmed release after reaching tumor for perfectly realizing the synergistic anti-tumor effect of tumor targeting, reversal of MDR and chemotherapy. Based on a fusion of these multiple mechanisms, PTX IPCNs showed a superior antitumor efficacy in mice loading A549/MDR tumor.
科研通智能强力驱动
Strongly Powered by AbleSci AI