PSCAR optimization to reduce EUV resist roughness with sensitization using Resist Formulation Optimizer (RFO) (Conference Presentation)

抵抗 极紫外光刻 材料科学 平版印刷术 表面粗糙度 光电子学 计算机科学 纳米技术 复合材料 图层(电子)
作者
Seiji Nagahara,Cong Que Dinh,Gosuke Shiraishi,Yuya Kamei,Kathleen Nafus,Yoshihiro Kondo,Michael Carcasi,Yukie Minekawa,Hiroyuki Ide,Yuichi Yoshida,Kosuke Yoshihara,Ryo Shimada,Masaru Tomono,Kazuhiro Takeshita,S. Biesemans,Hideo Nakashima,Danilo De Simone,John S. Petersen,Philippe Foubert,Peter De Bisschop
标识
DOI:10.1117/12.2515187
摘要

Resist Formulation Optimizer (RFO) is created to optimize resist formulation under EUV stochastic effects. Photosensitized Chemically Amplified ResistTM (PSCARTM) 2.0 reaction steps are included in the resist reaction model in RFO in addition to standard Chemically Amplified Resists (CAR) reaction steps. A simplified resist roughness calculation method is introduced in RFO. RFO uses "fast stochastic resist model" which uses continuous model information for stochastic calculation. "Resist component's dissolution inhibition model" is also introduced for better prediction of different resist formulations in RFO. The resist component's dissolution inhibition model is used for calculation of both Dissolution Inhibition Slope (DIS) and Dissolution Inhibition Deviation (DID). By dividing DID by DIS at a pattern edge, Line Edge Roughness (LER) can be predicted. The RFO performance is validated to give low residual errors after calibration even for different resist formulations. RFO is designed to optimize the resist formulation to minimize resist roughness as a cost function with keeping target CD. RFO suggests that PSCAR 2.0 with Polarity Switching photosensitizer precursor (POLAS) in combination with photosensitizer (PS) image enhancement may provide reduced resist roughness. Simulations using a calibrated rigorous stochastic resist model for S-Litho show a good prediction of PSCAR 2.0 process performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huanir99完成签到,获得积分10
刚刚
小青椒应助我就是柠檬精采纳,获得30
1秒前
zcx完成签到,获得积分10
1秒前
2秒前
2秒前
Rinamamiya完成签到,获得积分10
2秒前
坚强的橘子完成签到,获得积分10
3秒前
香蕉觅云应助锂氧采纳,获得10
3秒前
积极的凝云完成签到,获得积分10
3秒前
马里奥发布了新的文献求助10
4秒前
周杰完成签到,获得积分10
4秒前
4秒前
传奇3应助秋白采纳,获得10
5秒前
6秒前
6秒前
dw发布了新的文献求助10
6秒前
田田完成签到 ,获得积分10
7秒前
黄昕芮完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
10秒前
youxianlang完成签到,获得积分10
11秒前
番茄完成签到,获得积分10
11秒前
Zyc发布了新的文献求助10
12秒前
LinHan发布了新的文献求助10
13秒前
gui发布了新的文献求助10
13秒前
14秒前
14秒前
迷人夏槐发布了新的文献求助10
14秒前
小星星668完成签到,获得积分10
15秒前
16秒前
马鑫燚发布了新的文献求助10
16秒前
砼砼完成签到,获得积分10
16秒前
17秒前
汉堡包应助seven采纳,获得10
17秒前
Millie完成签到 ,获得积分10
18秒前
18秒前
香辣鸡腿堡完成签到,获得积分20
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461185
求助须知:如何正确求助?哪些是违规求助? 4566221
关于积分的说明 14304031
捐赠科研通 4491948
什么是DOI,文献DOI怎么找? 2460543
邀请新用户注册赠送积分活动 1449837
关于科研通互助平台的介绍 1425582