One-Chip Near-Field Thermophotovoltaic Device Integrating a Thin-Film Thermal Emitter and Photovoltaic Cell

热光电伏打 光电子学 共发射极 材料科学 光电流 带隙 光伏系统 热辐射 基质(水族馆) 电气工程 物理 海洋学 地质学 热力学 工程类
作者
Takuya Inoue,Takaaki Koyama,Dongyeon Daniel Kang,Keisuke Ikeda,Takashi Asano,Susumu Noda
出处
期刊:Nano Letters [American Chemical Society]
卷期号:19 (6): 3948-3952 被引量:96
标识
DOI:10.1021/acs.nanolett.9b01234
摘要

Thermal radiation transfer between two objects separated by a subwavelength gap (near-field thermal radiation transfer) can be orders of magnitude larger than that in free space, which is attracting increasing attention with respect to both fundamental nanoscience and its potential for high-power-density and high-efficiency conversion of heat to electricity in thermophotovoltaic (TPV) systems. However, the realization of near-field thermal radiation transfer in TPV systems involves significant challenges because it requires a subwavelength gap and large temperature difference between the emitter and the PV cell while minimizing the heat transfer that does not contribute to the photocurrent generation. To overcome these challenges, here we demonstrate a one-chip near-field TPV device consisting of a thin-film Si emitter and InGaAs PV cell with an intermediate Si substrate, which enables the suppression of the heat transfer due to sub-bandgap radiation by free carriers and surface modes. Through the one-chip integration and thermal isolation using Si process technologies, we realize a deep subwavelength gap (<150 nm) between the emitter and the intermediate substrate without using any external positioners while maintaining a large temperature difference (>700 K). Compared to the equivalent device operating in the far-field regime, we achieve 10-fold enhancement of the photocurrent in the PV cell without degrading the open-circuit voltage and fill factor, demonstrating the potential of our one-chip device for the future applications of near-field thermal radiation transfer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LWJ发布了新的文献求助10
刚刚
tracyinchina完成签到,获得积分10
刚刚
刚刚
刚刚
酷波er应助烤鸭采纳,获得10
1秒前
桐桐应助没有你不行采纳,获得10
2秒前
3秒前
今后应助electronic采纳,获得10
6秒前
包小豪发布了新的文献求助10
7秒前
7秒前
丘比特应助奋斗的凡采纳,获得10
7秒前
7秒前
彩色的凡之完成签到,获得积分10
7秒前
8秒前
8秒前
SciGPT应助谦让友绿采纳,获得10
9秒前
酷波er应助DDDD源采纳,获得10
9秒前
CUREME完成签到,获得积分10
9秒前
科研通AI5应助无敌吴硕采纳,获得10
10秒前
酷波er应助whn采纳,获得10
10秒前
黎少俊发布了新的文献求助10
11秒前
Dudu发布了新的文献求助10
12秒前
Zoe完成签到,获得积分10
12秒前
余余余完成签到,获得积分10
12秒前
郑开司09发布了新的文献求助10
13秒前
小二郎应助砍柴少年采纳,获得10
13秒前
13秒前
electronic完成签到,获得积分20
14秒前
小赵一定会发SCI完成签到,获得积分20
14秒前
15秒前
JJP完成签到,获得积分10
15秒前
15秒前
15秒前
15秒前
ATTENTION发布了新的文献求助10
16秒前
可可应助ruiii采纳,获得10
16秒前
16秒前
徐徐图之发布了新的文献求助10
17秒前
heat发布了新的文献求助10
17秒前
高兴的小完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3525386
求助须知:如何正确求助?哪些是违规求助? 3105990
关于积分的说明 9277903
捐赠科研通 2803436
什么是DOI,文献DOI怎么找? 1538711
邀请新用户注册赠送积分活动 716339
科研通“疑难数据库(出版商)”最低求助积分说明 709395