A meta-learning recommender system for hyperparameter tuning: Predicting when tuning improves SVM classifiers

超参数优化 人工神经网络 分类器(UML) 模式识别(心理学) 集成学习
作者
Rafael Gomes Mantovani,André Luis Debiaso Rossi,Edesio Alcobaça,Joaquin Vanschoren,André C. P. L. F. de Carvalho
出处
期刊:Information Sciences [Elsevier BV]
卷期号:501: 193-221 被引量:48
标识
DOI:10.1016/j.ins.2019.06.005
摘要

For many machine learning algorithms, predictive performance is critically affected by the hyperparameter values used to train them. However, tuning these hyperparameters can come at a high computational cost, especially on larger datasets, while the tuned settings do not always significantly outperform the default values. This paper proposes a recommender system based on meta-learning to identify exactly when it is better to use default values and when to tune hyperparameters for each new dataset. Besides, an in-depth analysis is performed to understand what they take into account for their decisions, providing useful insights. An extensive analysis of different categories of meta-features, meta-learners, and setups across 156 datasets is performed. Results show that it is possible to accurately predict when tuning will significantly improve the performance of the induced models. The proposed system reduces the time spent on optimization processes, without reducing the predictive performance of the induced models (when compared with the ones obtained using tuned hyperparameters). We also explain the decision-making process of the meta-learners in terms of linear separability-based hypotheses. Although this analysis is focused on the tuning of Support Vector Machines, it can also be applied to other algorithms, as shown in experiments performed with decision trees.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
哇哈哈哈哈哈完成签到,获得积分10
1秒前
科研通AI5应助号左左采纳,获得10
1秒前
2秒前
3秒前
4秒前
4秒前
orixero应助yy采纳,获得10
4秒前
backback完成签到,获得积分10
5秒前
华仔应助来来来采纳,获得10
5秒前
王心心完成签到,获得积分10
5秒前
5秒前
舒适青槐完成签到 ,获得积分10
6秒前
孙二二发布了新的文献求助10
6秒前
6秒前
曹原阁发布了新的文献求助10
7秒前
Lucky完成签到 ,获得积分10
7秒前
8秒前
Cik发布了新的文献求助10
9秒前
王心心发布了新的文献求助10
9秒前
科研通AI5应助ludy采纳,获得10
9秒前
刘达发布了新的文献求助10
10秒前
11秒前
12秒前
努力的史迪仔完成签到,获得积分10
12秒前
共享精神应助啊毛采纳,获得10
12秒前
Owen应助曹原阁采纳,获得10
13秒前
Md_Rayhan_Ali完成签到,获得积分10
13秒前
15秒前
abcd完成签到,获得积分20
16秒前
yy发布了新的文献求助10
16秒前
17秒前
卫踏歌完成签到,获得积分10
17秒前
丘比特应助Caden采纳,获得10
18秒前
18秒前
18秒前
无辜的猎豹完成签到 ,获得积分10
19秒前
19秒前
一头蠢驴发布了新的文献求助10
20秒前
算命先生发布了新的文献求助10
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732331
求助须知:如何正确求助?哪些是违规求助? 3276613
关于积分的说明 9997784
捐赠科研通 2992192
什么是DOI,文献DOI怎么找? 1642047
邀请新用户注册赠送积分活动 780144
科研通“疑难数据库(出版商)”最低求助积分说明 748701