亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A New Contour-Based Approach to Moving Object Detection and Tracking Using a Low-End Three-Dimensional Laser Scanner

计算机视觉 扫描仪 激光扫描 人工智能 跟踪(教育) 目标检测 计算机科学 激光器 光学 模式识别(心理学) 物理 心理学 教育学
作者
Jhonghyun An,Baehoon Choi,Hyun-Ju Kim,Euntai Kim
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:68 (8): 7392-7405 被引量:10
标识
DOI:10.1109/tvt.2019.2924268
摘要

Unlike high-end three-dimensional (3-D) scanners with more than 16 layers which are mainly used in academia, low-end 3-D scanners with a few layers are being developed by sensor makers for installation in commercial advanced driver assistance system. The output of a low-end 3-D scanner is completely different from that of a full 3-D scanner and it is rather similar to the output of a 2-D scanner with a single layer. In this paper, a new framework for moving object detection and subsequent tracking using a low-end 3-D scanner with four layers is proposed. The proposed method uses the contours of the objects to obtain a robust association between a detection and a tracking. The proposed method comprises five steps: preprocessing, contour extraction, hypothesis generation, pruning, and moving object detection. In the preprocessing step, outliers, such as the ground or backlights from preceding vehicles, are removed and the scanned points are decomposed into segments, each of which corresponds to a single object. In the track hypothesis generation step, each segment is associated with an existing track maintained over multiple scans. The association method developed here uses the contour shape of the segments and is motivated by the linear programming and dynamic time warping. In the track hypothesis pruning step, unlikely tracks are removed from the hypothesis trees based on the proposed hypothesis scores. In the last step, moving objects are detected based on the track velocity. The proposed method is applied to four challenging real-world scenarios, and its validity is demonstrated via experimentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Arisqotle完成签到,获得积分10
5秒前
你好夏天完成签到 ,获得积分10
11秒前
Arisqotle发布了新的文献求助10
11秒前
羞涩的士晋完成签到,获得积分10
12秒前
高屋建瓴完成签到,获得积分10
14秒前
闪闪的梦柏完成签到 ,获得积分10
19秒前
zy完成签到,获得积分10
33秒前
41秒前
善学以致用应助害羞绮烟采纳,获得10
44秒前
50秒前
Jasper应助科研通管家采纳,获得10
50秒前
HaCat应助科研通管家采纳,获得10
50秒前
50秒前
50秒前
52秒前
害羞绮烟完成签到,获得积分20
55秒前
57秒前
害羞绮烟发布了新的文献求助10
58秒前
今后应助Gabriel采纳,获得10
59秒前
llpj发布了新的文献求助10
1分钟前
Lin发布了新的文献求助10
1分钟前
witty完成签到,获得积分10
1分钟前
Arisqotle发布了新的文献求助10
1分钟前
1分钟前
1分钟前
波波完成签到 ,获得积分10
1分钟前
专注凌文发布了新的文献求助10
1分钟前
1分钟前
Lin完成签到,获得积分10
1分钟前
专注凌文完成签到,获得积分10
1分钟前
酷波er应助牛牛采纳,获得10
1分钟前
1分钟前
学术熊完成签到,获得积分10
1分钟前
学术熊发布了新的文献求助10
1分钟前
刘哔完成签到,获得积分10
1分钟前
haoyooo完成签到 ,获得积分10
1分钟前
NiceSunnyDay完成签到 ,获得积分10
1分钟前
诚心的访蕊完成签到 ,获得积分10
1分钟前
彭于晏应助Ziyi_Xu采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301944
求助须知:如何正确求助?哪些是违规求助? 4449309
关于积分的说明 13848145
捐赠科研通 4335449
什么是DOI,文献DOI怎么找? 2380300
邀请新用户注册赠送积分活动 1375305
关于科研通互助平台的介绍 1341402