A New Contour-Based Approach to Moving Object Detection and Tracking Using a Low-End Three-Dimensional Laser Scanner

计算机视觉 扫描仪 激光扫描 人工智能 跟踪(教育) 目标检测 计算机科学 激光器 光学 模式识别(心理学) 物理 心理学 教育学
作者
Jhonghyun An,Baehoon Choi,Hyun-Ju Kim,Euntai Kim
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:68 (8): 7392-7405 被引量:10
标识
DOI:10.1109/tvt.2019.2924268
摘要

Unlike high-end three-dimensional (3-D) scanners with more than 16 layers which are mainly used in academia, low-end 3-D scanners with a few layers are being developed by sensor makers for installation in commercial advanced driver assistance system. The output of a low-end 3-D scanner is completely different from that of a full 3-D scanner and it is rather similar to the output of a 2-D scanner with a single layer. In this paper, a new framework for moving object detection and subsequent tracking using a low-end 3-D scanner with four layers is proposed. The proposed method uses the contours of the objects to obtain a robust association between a detection and a tracking. The proposed method comprises five steps: preprocessing, contour extraction, hypothesis generation, pruning, and moving object detection. In the preprocessing step, outliers, such as the ground or backlights from preceding vehicles, are removed and the scanned points are decomposed into segments, each of which corresponds to a single object. In the track hypothesis generation step, each segment is associated with an existing track maintained over multiple scans. The association method developed here uses the contour shape of the segments and is motivated by the linear programming and dynamic time warping. In the track hypothesis pruning step, unlikely tracks are removed from the hypothesis trees based on the proposed hypothesis scores. In the last step, moving objects are detected based on the track velocity. The proposed method is applied to four challenging real-world scenarios, and its validity is demonstrated via experimentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2E发布了新的文献求助10
刚刚
张美丽完成签到,获得积分10
刚刚
ming发布了新的文献求助10
刚刚
科研通AI5应助张棋欢采纳,获得10
刚刚
1秒前
想要礼物的艾斯米拉达完成签到,获得积分10
1秒前
贺梦妍发布了新的文献求助10
2秒前
天蓝完成签到,获得积分10
2秒前
fanfan44390发布了新的文献求助10
3秒前
CCH完成签到,获得积分10
3秒前
着急的书白完成签到,获得积分20
4秒前
tracy10完成签到,获得积分10
4秒前
zzj完成签到,获得积分10
4秒前
4秒前
敬鱼完成签到,获得积分10
5秒前
风风发布了新的文献求助10
5秒前
科目三应助00采纳,获得10
5秒前
可爱的函函应助liulangnmg采纳,获得20
6秒前
科研通AI6应助咖啡豆采纳,获得50
6秒前
老干部发布了新的文献求助10
6秒前
6秒前
敬鱼发布了新的文献求助10
8秒前
雾里完成签到,获得积分10
8秒前
CCH发布了新的文献求助10
8秒前
9秒前
李健应助王灿章采纳,获得10
9秒前
科研通AI5应助月亮采纳,获得10
9秒前
小王小王发布了新的文献求助10
10秒前
啵赞的龟丝儿完成签到,获得积分10
10秒前
fanfan44390完成签到,获得积分10
10秒前
共享精神应助坚定的寒松采纳,获得10
10秒前
害羞文博发布了新的文献求助10
11秒前
ermu应助felix采纳,获得10
12秒前
毛毛弟发布了新的文献求助10
12秒前
曾无忧应助felix采纳,获得10
12秒前
wjx发布了新的文献求助10
13秒前
13秒前
激动的跳跳糖完成签到 ,获得积分10
14秒前
14秒前
ZeKaWa应助HY采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097113
求助须知:如何正确求助?哪些是违规求助? 4309682
关于积分的说明 13427832
捐赠科研通 4137094
什么是DOI,文献DOI怎么找? 2266469
邀请新用户注册赠送积分活动 1269541
关于科研通互助平台的介绍 1205874