A New Contour-Based Approach to Moving Object Detection and Tracking Using a Low-End Three-Dimensional Laser Scanner

计算机视觉 扫描仪 激光扫描 人工智能 跟踪(教育) 目标检测 计算机科学 激光器 光学 模式识别(心理学) 物理 心理学 教育学
作者
Jhonghyun An,Baehoon Choi,Hyun-Ju Kim,Euntai Kim
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:68 (8): 7392-7405 被引量:10
标识
DOI:10.1109/tvt.2019.2924268
摘要

Unlike high-end three-dimensional (3-D) scanners with more than 16 layers which are mainly used in academia, low-end 3-D scanners with a few layers are being developed by sensor makers for installation in commercial advanced driver assistance system. The output of a low-end 3-D scanner is completely different from that of a full 3-D scanner and it is rather similar to the output of a 2-D scanner with a single layer. In this paper, a new framework for moving object detection and subsequent tracking using a low-end 3-D scanner with four layers is proposed. The proposed method uses the contours of the objects to obtain a robust association between a detection and a tracking. The proposed method comprises five steps: preprocessing, contour extraction, hypothesis generation, pruning, and moving object detection. In the preprocessing step, outliers, such as the ground or backlights from preceding vehicles, are removed and the scanned points are decomposed into segments, each of which corresponds to a single object. In the track hypothesis generation step, each segment is associated with an existing track maintained over multiple scans. The association method developed here uses the contour shape of the segments and is motivated by the linear programming and dynamic time warping. In the track hypothesis pruning step, unlikely tracks are removed from the hypothesis trees based on the proposed hypothesis scores. In the last step, moving objects are detected based on the track velocity. The proposed method is applied to four challenging real-world scenarios, and its validity is demonstrated via experimentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
T1unkillable完成签到,获得积分10
2秒前
2秒前
amault完成签到,获得积分10
2秒前
忆往昔发布了新的文献求助10
2秒前
爆米花应助苏鑫采纳,获得10
3秒前
奋斗初南完成签到,获得积分10
3秒前
3秒前
Orange应助xz采纳,获得10
3秒前
3秒前
H2O完成签到,获得积分10
4秒前
wangjing11完成签到,获得积分10
4秒前
科研通AI6应助unique采纳,获得10
5秒前
孤尘风凌完成签到 ,获得积分10
5秒前
xiaoda发布了新的文献求助10
6秒前
开放如天完成签到 ,获得积分10
6秒前
余正扬完成签到,获得积分10
8秒前
啦啦啦发布了新的文献求助10
8秒前
luoziwuhui完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
忆往昔完成签到,获得积分10
11秒前
12秒前
13秒前
tanlinxin完成签到,获得积分10
13秒前
James完成签到,获得积分10
14秒前
Ding完成签到,获得积分10
14秒前
14秒前
xz发布了新的文献求助10
15秒前
wangqingxia完成签到,获得积分10
15秒前
15秒前
包容的映天完成签到 ,获得积分10
15秒前
15秒前
16秒前
16秒前
菲菲宋发布了新的文献求助30
16秒前
zbz12138发布了新的文献求助10
18秒前
18秒前
19秒前
洁净的冬日完成签到,获得积分10
20秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379399
求助须知:如何正确求助?哪些是违规求助? 4503761
关于积分的说明 14016516
捐赠科研通 4412511
什么是DOI,文献DOI怎么找? 2423853
邀请新用户注册赠送积分活动 1416678
关于科研通互助平台的介绍 1394244