已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A New Contour-Based Approach to Moving Object Detection and Tracking Using a Low-End Three-Dimensional Laser Scanner

计算机视觉 扫描仪 激光扫描 人工智能 跟踪(教育) 目标检测 计算机科学 激光器 光学 模式识别(心理学) 物理 心理学 教育学
作者
Jhonghyun An,Baehoon Choi,Hyun-Ju Kim,Euntai Kim
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:68 (8): 7392-7405 被引量:10
标识
DOI:10.1109/tvt.2019.2924268
摘要

Unlike high-end three-dimensional (3-D) scanners with more than 16 layers which are mainly used in academia, low-end 3-D scanners with a few layers are being developed by sensor makers for installation in commercial advanced driver assistance system. The output of a low-end 3-D scanner is completely different from that of a full 3-D scanner and it is rather similar to the output of a 2-D scanner with a single layer. In this paper, a new framework for moving object detection and subsequent tracking using a low-end 3-D scanner with four layers is proposed. The proposed method uses the contours of the objects to obtain a robust association between a detection and a tracking. The proposed method comprises five steps: preprocessing, contour extraction, hypothesis generation, pruning, and moving object detection. In the preprocessing step, outliers, such as the ground or backlights from preceding vehicles, are removed and the scanned points are decomposed into segments, each of which corresponds to a single object. In the track hypothesis generation step, each segment is associated with an existing track maintained over multiple scans. The association method developed here uses the contour shape of the segments and is motivated by the linear programming and dynamic time warping. In the track hypothesis pruning step, unlikely tracks are removed from the hypothesis trees based on the proposed hypothesis scores. In the last step, moving objects are detected based on the track velocity. The proposed method is applied to four challenging real-world scenarios, and its validity is demonstrated via experimentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小枣完成签到 ,获得积分10
刚刚
安静的棉花糖完成签到 ,获得积分10
刚刚
NexusExplorer应助THEFAN采纳,获得10
1秒前
九黎完成签到 ,获得积分10
2秒前
Tumumu完成签到,获得积分0
3秒前
yinjs158完成签到,获得积分10
4秒前
echo发布了新的文献求助10
4秒前
5秒前
柚子想吃橘子完成签到,获得积分10
5秒前
Lc20020320发布了新的文献求助150
6秒前
lemonyu完成签到 ,获得积分10
8秒前
微课完成签到,获得积分20
10秒前
10秒前
10秒前
鲤鱼松鼠完成签到,获得积分10
10秒前
xiuxiuzhang完成签到 ,获得积分10
11秒前
琪琪发布了新的文献求助10
11秒前
12秒前
所所应助Lis采纳,获得10
14秒前
成就凡双应助科研通管家采纳,获得10
14秒前
李健应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
成就凡双应助科研通管家采纳,获得10
14秒前
14秒前
ceciiahanhan完成签到,获得积分10
15秒前
鲤鱼松鼠发布了新的文献求助10
16秒前
酒渡完成签到,获得积分10
16秒前
研友_VZG7GZ应助缥缈的半芹采纳,获得10
17秒前
酷波er应助lmt采纳,获得10
21秒前
21秒前
慈祥的蛋挞完成签到 ,获得积分10
21秒前
雾海完成签到,获得积分10
24秒前
香蕉觅云应助鲤鱼松鼠采纳,获得10
24秒前
半夏黄良完成签到,获得积分10
25秒前
ComeOn发布了新的文献求助10
26秒前
嗯嗯嗯发布了新的文献求助10
26秒前
27秒前
XinEr完成签到 ,获得积分10
27秒前
繁星完成签到,获得积分10
28秒前
Yiyyan完成签到,获得积分10
29秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705435
求助须知:如何正确求助?哪些是违规求助? 5164132
关于积分的说明 15245526
捐赠科研通 4859289
什么是DOI,文献DOI怎么找? 2607711
邀请新用户注册赠送积分活动 1558849
关于科研通互助平台的介绍 1516399