A New Contour-Based Approach to Moving Object Detection and Tracking Using a Low-End Three-Dimensional Laser Scanner

计算机视觉 扫描仪 激光扫描 人工智能 跟踪(教育) 目标检测 计算机科学 激光器 光学 模式识别(心理学) 物理 心理学 教育学
作者
Jhonghyun An,Baehoon Choi,Hyun-Ju Kim,Euntai Kim
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:68 (8): 7392-7405 被引量:10
标识
DOI:10.1109/tvt.2019.2924268
摘要

Unlike high-end three-dimensional (3-D) scanners with more than 16 layers which are mainly used in academia, low-end 3-D scanners with a few layers are being developed by sensor makers for installation in commercial advanced driver assistance system. The output of a low-end 3-D scanner is completely different from that of a full 3-D scanner and it is rather similar to the output of a 2-D scanner with a single layer. In this paper, a new framework for moving object detection and subsequent tracking using a low-end 3-D scanner with four layers is proposed. The proposed method uses the contours of the objects to obtain a robust association between a detection and a tracking. The proposed method comprises five steps: preprocessing, contour extraction, hypothesis generation, pruning, and moving object detection. In the preprocessing step, outliers, such as the ground or backlights from preceding vehicles, are removed and the scanned points are decomposed into segments, each of which corresponds to a single object. In the track hypothesis generation step, each segment is associated with an existing track maintained over multiple scans. The association method developed here uses the contour shape of the segments and is motivated by the linear programming and dynamic time warping. In the track hypothesis pruning step, unlikely tracks are removed from the hypothesis trees based on the proposed hypothesis scores. In the last step, moving objects are detected based on the track velocity. The proposed method is applied to four challenging real-world scenarios, and its validity is demonstrated via experimentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yiren完成签到,获得积分10
1秒前
2秒前
三水完成签到,获得积分10
2秒前
nora发布了新的文献求助10
2秒前
4秒前
xiadu发布了新的文献求助10
5秒前
Lsy完成签到,获得积分10
5秒前
5秒前
5秒前
8秒前
马子妍发布了新的文献求助10
8秒前
隐形曼青应助粥mi采纳,获得10
9秒前
天天完成签到 ,获得积分10
10秒前
XIEQ完成签到,获得积分10
11秒前
酷波er应助Yuchaoo采纳,获得10
11秒前
微微发布了新的文献求助20
11秒前
老衲发布了新的文献求助10
11秒前
phil发布了新的文献求助10
11秒前
七七完成签到,获得积分10
12秒前
体贴怜翠发布了新的文献求助10
12秒前
小白应助XIEQ采纳,获得10
14秒前
15秒前
18秒前
woobinhua完成签到,获得积分10
18秒前
今后应助brianzk1989采纳,获得10
18秒前
vv发布了新的文献求助10
19秒前
20秒前
20秒前
22秒前
沙砾完成签到,获得积分10
22秒前
MA发布了新的文献求助10
23秒前
23秒前
孤独绮梅完成签到 ,获得积分10
24秒前
25秒前
小白应助XIEQ采纳,获得10
25秒前
猪猪hero应助含辰惜采纳,获得10
25秒前
25秒前
12发布了新的文献求助10
26秒前
无极微光应助1454727550采纳,获得20
26秒前
jinzhen发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605657
求助须知:如何正确求助?哪些是违规求助? 4690241
关于积分的说明 14862785
捐赠科研通 4702214
什么是DOI,文献DOI怎么找? 2542212
邀请新用户注册赠送积分活动 1507831
关于科研通互助平台的介绍 1472132