A New Contour-Based Approach to Moving Object Detection and Tracking Using a Low-End Three-Dimensional Laser Scanner

计算机视觉 扫描仪 激光扫描 人工智能 跟踪(教育) 目标检测 计算机科学 激光器 光学 模式识别(心理学) 物理 心理学 教育学
作者
Jhonghyun An,Baehoon Choi,Hyun-Ju Kim,Euntai Kim
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:68 (8): 7392-7405 被引量:10
标识
DOI:10.1109/tvt.2019.2924268
摘要

Unlike high-end three-dimensional (3-D) scanners with more than 16 layers which are mainly used in academia, low-end 3-D scanners with a few layers are being developed by sensor makers for installation in commercial advanced driver assistance system. The output of a low-end 3-D scanner is completely different from that of a full 3-D scanner and it is rather similar to the output of a 2-D scanner with a single layer. In this paper, a new framework for moving object detection and subsequent tracking using a low-end 3-D scanner with four layers is proposed. The proposed method uses the contours of the objects to obtain a robust association between a detection and a tracking. The proposed method comprises five steps: preprocessing, contour extraction, hypothesis generation, pruning, and moving object detection. In the preprocessing step, outliers, such as the ground or backlights from preceding vehicles, are removed and the scanned points are decomposed into segments, each of which corresponds to a single object. In the track hypothesis generation step, each segment is associated with an existing track maintained over multiple scans. The association method developed here uses the contour shape of the segments and is motivated by the linear programming and dynamic time warping. In the track hypothesis pruning step, unlikely tracks are removed from the hypothesis trees based on the proposed hypothesis scores. In the last step, moving objects are detected based on the track velocity. The proposed method is applied to four challenging real-world scenarios, and its validity is demonstrated via experimentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助波波采纳,获得10
刚刚
Ch完成签到 ,获得积分10
刚刚
刚刚
刚刚
猪猪侠完成签到,获得积分10
1秒前
Hw发布了新的文献求助10
1秒前
liam发布了新的文献求助10
2秒前
小吴同学发布了新的文献求助30
3秒前
sss完成签到,获得积分10
3秒前
自然鹭洋完成签到,获得积分20
3秒前
夏宋完成签到,获得积分20
3秒前
4秒前
阳光的沧海完成签到 ,获得积分10
4秒前
5秒前
5秒前
Akim应助跑快点采纳,获得10
5秒前
白茶发布了新的文献求助10
5秒前
星际发布了新的文献求助10
5秒前
6秒前
你好完成签到,获得积分10
7秒前
今后应助爱听歌的坤坤采纳,获得10
7秒前
carbonhan发布了新的文献求助10
7秒前
liam完成签到,获得积分10
8秒前
Jane完成签到 ,获得积分10
8秒前
9秒前
希望天下0贩的0应助容止采纳,获得10
10秒前
纪智勇发布了新的文献求助10
10秒前
坦率的海豚完成签到,获得积分10
10秒前
xiang完成签到,获得积分10
12秒前
6lllpp发布了新的文献求助10
12秒前
疯癫科研人完成签到,获得积分10
12秒前
12秒前
Dorren发布了新的文献求助10
12秒前
慕青应助Lee采纳,获得10
13秒前
852应助小雪花采纳,获得10
15秒前
无花果应助别摆烂了采纳,获得10
15秒前
思源应助别摆烂了采纳,获得10
15秒前
共享精神应助别摆烂了采纳,获得10
15秒前
缥缈老九完成签到,获得积分10
15秒前
li发布了新的文献求助10
16秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215500
求助须知:如何正确求助?哪些是违规求助? 4390616
关于积分的说明 13670382
捐赠科研通 4252539
什么是DOI,文献DOI怎么找? 2333148
邀请新用户注册赠送积分活动 1330741
关于科研通互助平台的介绍 1284568