已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A New Contour-Based Approach to Moving Object Detection and Tracking Using a Low-End Three-Dimensional Laser Scanner

计算机视觉 扫描仪 激光扫描 人工智能 跟踪(教育) 目标检测 计算机科学 激光器 光学 模式识别(心理学) 物理 心理学 教育学
作者
Jhonghyun An,Baehoon Choi,Hyun-Ju Kim,Euntai Kim
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:68 (8): 7392-7405 被引量:10
标识
DOI:10.1109/tvt.2019.2924268
摘要

Unlike high-end three-dimensional (3-D) scanners with more than 16 layers which are mainly used in academia, low-end 3-D scanners with a few layers are being developed by sensor makers for installation in commercial advanced driver assistance system. The output of a low-end 3-D scanner is completely different from that of a full 3-D scanner and it is rather similar to the output of a 2-D scanner with a single layer. In this paper, a new framework for moving object detection and subsequent tracking using a low-end 3-D scanner with four layers is proposed. The proposed method uses the contours of the objects to obtain a robust association between a detection and a tracking. The proposed method comprises five steps: preprocessing, contour extraction, hypothesis generation, pruning, and moving object detection. In the preprocessing step, outliers, such as the ground or backlights from preceding vehicles, are removed and the scanned points are decomposed into segments, each of which corresponds to a single object. In the track hypothesis generation step, each segment is associated with an existing track maintained over multiple scans. The association method developed here uses the contour shape of the segments and is motivated by the linear programming and dynamic time warping. In the track hypothesis pruning step, unlikely tracks are removed from the hypothesis trees based on the proposed hypothesis scores. In the last step, moving objects are detected based on the track velocity. The proposed method is applied to four challenging real-world scenarios, and its validity is demonstrated via experimentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
瞬间de回眸完成签到 ,获得积分0
1秒前
Akim应助乐观伟诚采纳,获得10
2秒前
布吉岛呀完成签到 ,获得积分10
3秒前
开心超人发布了新的文献求助10
3秒前
三点水完成签到,获得积分10
3秒前
RuiBigHead发布了新的文献求助10
5秒前
朝朝暮夕完成签到 ,获得积分10
5秒前
5秒前
8秒前
8秒前
9秒前
9秒前
醉熏的姿发布了新的文献求助10
10秒前
杨武天一完成签到,获得积分10
10秒前
乐观伟诚完成签到,获得积分10
11秒前
11秒前
季不住完成签到,获得积分10
13秒前
呼延水云完成签到,获得积分10
14秒前
杨武天一发布了新的文献求助10
14秒前
minmin发布了新的文献求助10
14秒前
乐观伟诚发布了新的文献求助10
15秒前
16秒前
逮劳完成签到 ,获得积分10
18秒前
19秒前
心灵美平彤完成签到 ,获得积分10
20秒前
汤柏钧完成签到 ,获得积分10
21秒前
shinn发布了新的文献求助10
21秒前
缘迹发布了新的文献求助10
21秒前
洁净的千凡完成签到 ,获得积分10
22秒前
炸鸡完成签到 ,获得积分0
22秒前
自觉的草莓完成签到 ,获得积分10
22秒前
科研通AI6应助石榴汁的书采纳,获得10
23秒前
24秒前
自由的氧化铝完成签到 ,获得积分10
25秒前
Swear完成签到 ,获得积分10
25秒前
yqt完成签到,获得积分10
26秒前
无聊的新波完成签到 ,获得积分10
28秒前
31秒前
锅包肉完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401154
求助须知:如何正确求助?哪些是违规求助? 4520145
关于积分的说明 14078818
捐赠科研通 4433229
什么是DOI,文献DOI怎么找? 2434030
邀请新用户注册赠送积分活动 1426180
关于科研通互助平台的介绍 1404792