A New Contour-Based Approach to Moving Object Detection and Tracking Using a Low-End Three-Dimensional Laser Scanner

计算机视觉 扫描仪 激光扫描 人工智能 跟踪(教育) 目标检测 计算机科学 激光器 光学 模式识别(心理学) 物理 心理学 教育学
作者
Jhonghyun An,Baehoon Choi,Hyun-Ju Kim,Euntai Kim
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:68 (8): 7392-7405 被引量:10
标识
DOI:10.1109/tvt.2019.2924268
摘要

Unlike high-end three-dimensional (3-D) scanners with more than 16 layers which are mainly used in academia, low-end 3-D scanners with a few layers are being developed by sensor makers for installation in commercial advanced driver assistance system. The output of a low-end 3-D scanner is completely different from that of a full 3-D scanner and it is rather similar to the output of a 2-D scanner with a single layer. In this paper, a new framework for moving object detection and subsequent tracking using a low-end 3-D scanner with four layers is proposed. The proposed method uses the contours of the objects to obtain a robust association between a detection and a tracking. The proposed method comprises five steps: preprocessing, contour extraction, hypothesis generation, pruning, and moving object detection. In the preprocessing step, outliers, such as the ground or backlights from preceding vehicles, are removed and the scanned points are decomposed into segments, each of which corresponds to a single object. In the track hypothesis generation step, each segment is associated with an existing track maintained over multiple scans. The association method developed here uses the contour shape of the segments and is motivated by the linear programming and dynamic time warping. In the track hypothesis pruning step, unlikely tracks are removed from the hypothesis trees based on the proposed hypothesis scores. In the last step, moving objects are detected based on the track velocity. The proposed method is applied to four challenging real-world scenarios, and its validity is demonstrated via experimentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DXiao发布了新的文献求助10
刚刚
Chenglong发布了新的文献求助10
1秒前
111发布了新的文献求助20
1秒前
Bertha完成签到,获得积分10
1秒前
拉布完成签到,获得积分10
1秒前
Ikejima完成签到,获得积分10
1秒前
2秒前
Emily完成签到,获得积分10
2秒前
2秒前
2秒前
Furina完成签到,获得积分10
3秒前
ZZW完成签到,获得积分10
3秒前
wqk完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
温柔元组灰完成签到,获得积分10
5秒前
Funny完成签到,获得积分20
5秒前
偏遇完成签到,获得积分10
5秒前
一一一完成签到,获得积分10
6秒前
零一发布了新的文献求助10
6秒前
曲初雪发布了新的文献求助10
6秒前
yx完成签到,获得积分10
6秒前
开放的如花完成签到,获得积分10
7秒前
superllq完成签到,获得积分10
8秒前
8秒前
肉肉完成签到,获得积分10
8秒前
王碱发布了新的文献求助10
9秒前
淡淡的襄完成签到,获得积分10
9秒前
9秒前
Wsn发布了新的文献求助10
9秒前
友好小松鼠完成签到 ,获得积分10
10秒前
zhaohepeng发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
10秒前
梁跃耀完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629618
求助须知:如何正确求助?哪些是违规求助? 4720333
关于积分的说明 14970297
捐赠科研通 4787673
什么是DOI,文献DOI怎么找? 2556435
邀请新用户注册赠送积分活动 1517561
关于科研通互助平台的介绍 1478251