亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A New Contour-Based Approach to Moving Object Detection and Tracking Using a Low-End Three-Dimensional Laser Scanner

计算机视觉 扫描仪 激光扫描 人工智能 跟踪(教育) 目标检测 计算机科学 激光器 光学 模式识别(心理学) 物理 心理学 教育学
作者
Jhonghyun An,Baehoon Choi,Hyun-Ju Kim,Euntai Kim
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:68 (8): 7392-7405 被引量:10
标识
DOI:10.1109/tvt.2019.2924268
摘要

Unlike high-end three-dimensional (3-D) scanners with more than 16 layers which are mainly used in academia, low-end 3-D scanners with a few layers are being developed by sensor makers for installation in commercial advanced driver assistance system. The output of a low-end 3-D scanner is completely different from that of a full 3-D scanner and it is rather similar to the output of a 2-D scanner with a single layer. In this paper, a new framework for moving object detection and subsequent tracking using a low-end 3-D scanner with four layers is proposed. The proposed method uses the contours of the objects to obtain a robust association between a detection and a tracking. The proposed method comprises five steps: preprocessing, contour extraction, hypothesis generation, pruning, and moving object detection. In the preprocessing step, outliers, such as the ground or backlights from preceding vehicles, are removed and the scanned points are decomposed into segments, each of which corresponds to a single object. In the track hypothesis generation step, each segment is associated with an existing track maintained over multiple scans. The association method developed here uses the contour shape of the segments and is motivated by the linear programming and dynamic time warping. In the track hypothesis pruning step, unlikely tracks are removed from the hypothesis trees based on the proposed hypothesis scores. In the last step, moving objects are detected based on the track velocity. The proposed method is applied to four challenging real-world scenarios, and its validity is demonstrated via experimentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有机卡拉米完成签到,获得积分10
8秒前
24秒前
phter完成签到,获得积分10
31秒前
加菲丰丰应助科研通管家采纳,获得10
1分钟前
1分钟前
Andy.发布了新的文献求助10
1分钟前
Andy.完成签到,获得积分10
1分钟前
走啊走完成签到,获得积分10
1分钟前
1分钟前
哈牛柚子鹿完成签到,获得积分10
1分钟前
子春二杦发布了新的文献求助10
1分钟前
斯文败类应助飞快的孱采纳,获得10
1分钟前
2分钟前
科目三应助走啊走采纳,获得10
2分钟前
哈哈哈发布了新的文献求助30
2分钟前
yyy发布了新的文献求助10
2分钟前
1947188918完成签到,获得积分10
2分钟前
阿鑫完成签到 ,获得积分10
2分钟前
子春二杦完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
上官若男应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
加菲丰丰应助科研通管家采纳,获得10
3分钟前
脑洞疼应助科研通管家采纳,获得10
3分钟前
yyy完成签到,获得积分10
3分钟前
nn发布了新的文献求助10
3分钟前
3分钟前
nn完成签到,获得积分10
3分钟前
3分钟前
走啊走发布了新的文献求助10
3分钟前
陨落星辰完成签到 ,获得积分10
4分钟前
酷波er应助方彧采纳,获得30
4分钟前
哈哈哈完成签到,获得积分10
4分钟前
wbs13521完成签到,获得积分0
4分钟前
小蘑菇应助飞快的孱采纳,获得10
4分钟前
5分钟前
Y3611应助科小白采纳,获得10
5分钟前
5分钟前
方彧发布了新的文献求助30
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4626209
求助须知:如何正确求助?哪些是违规求助? 4025196
关于积分的说明 12458497
捐赠科研通 3710447
什么是DOI,文献DOI怎么找? 2046620
邀请新用户注册赠送积分活动 1078607
科研通“疑难数据库(出版商)”最低求助积分说明 961058