A New Contour-Based Approach to Moving Object Detection and Tracking Using a Low-End Three-Dimensional Laser Scanner

计算机视觉 扫描仪 激光扫描 人工智能 跟踪(教育) 目标检测 计算机科学 激光器 光学 模式识别(心理学) 物理 心理学 教育学
作者
Jhonghyun An,Baehoon Choi,Hyun-Ju Kim,Euntai Kim
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:68 (8): 7392-7405 被引量:10
标识
DOI:10.1109/tvt.2019.2924268
摘要

Unlike high-end three-dimensional (3-D) scanners with more than 16 layers which are mainly used in academia, low-end 3-D scanners with a few layers are being developed by sensor makers for installation in commercial advanced driver assistance system. The output of a low-end 3-D scanner is completely different from that of a full 3-D scanner and it is rather similar to the output of a 2-D scanner with a single layer. In this paper, a new framework for moving object detection and subsequent tracking using a low-end 3-D scanner with four layers is proposed. The proposed method uses the contours of the objects to obtain a robust association between a detection and a tracking. The proposed method comprises five steps: preprocessing, contour extraction, hypothesis generation, pruning, and moving object detection. In the preprocessing step, outliers, such as the ground or backlights from preceding vehicles, are removed and the scanned points are decomposed into segments, each of which corresponds to a single object. In the track hypothesis generation step, each segment is associated with an existing track maintained over multiple scans. The association method developed here uses the contour shape of the segments and is motivated by the linear programming and dynamic time warping. In the track hypothesis pruning step, unlikely tracks are removed from the hypothesis trees based on the proposed hypothesis scores. In the last step, moving objects are detected based on the track velocity. The proposed method is applied to four challenging real-world scenarios, and its validity is demonstrated via experimentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Plasma992575完成签到,获得积分10
刚刚
刚刚
虚幻唯雪发布了新的文献求助10
刚刚
大模型应助流星采纳,获得10
2秒前
2秒前
2秒前
3秒前
3秒前
Unstoppable发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
千叶儿完成签到,获得积分20
4秒前
一米阳光发布了新的文献求助10
4秒前
ding应助ppppp采纳,获得10
4秒前
科研通AI6.1应助11111采纳,获得10
4秒前
4秒前
月月发布了新的文献求助10
4秒前
RR发布了新的文献求助10
4秒前
NexusExplorer应助zql采纳,获得10
5秒前
顾矜应助王通采纳,获得10
5秒前
大模型应助一一采纳,获得10
5秒前
麦克发布了新的文献求助10
6秒前
传奇3应助102755采纳,获得10
6秒前
jy关闭了jy文献求助
6秒前
Ting发布了新的文献求助10
7秒前
李浩发布了新的文献求助10
7秒前
zy完成签到 ,获得积分10
7秒前
Qps发布了新的文献求助10
8秒前
友好雪枫完成签到,获得积分10
8秒前
jrzsy完成签到,获得积分10
9秒前
千叶儿发布了新的文献求助10
10秒前
10秒前
10秒前
叨叨发布了新的文献求助20
10秒前
11秒前
11秒前
今后应助sssssss采纳,获得10
12秒前
12秒前
姚龙完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784591
求助须知:如何正确求助?哪些是违规求助? 5683318
关于积分的说明 15464856
捐赠科研通 4913776
什么是DOI,文献DOI怎么找? 2644858
邀请新用户注册赠送积分活动 1592804
关于科研通互助平台的介绍 1547207