已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A New Contour-Based Approach to Moving Object Detection and Tracking Using a Low-End Three-Dimensional Laser Scanner

计算机视觉 扫描仪 激光扫描 人工智能 跟踪(教育) 目标检测 计算机科学 激光器 光学 模式识别(心理学) 物理 心理学 教育学
作者
Jhonghyun An,Baehoon Choi,Hyun-Ju Kim,Euntai Kim
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:68 (8): 7392-7405 被引量:10
标识
DOI:10.1109/tvt.2019.2924268
摘要

Unlike high-end three-dimensional (3-D) scanners with more than 16 layers which are mainly used in academia, low-end 3-D scanners with a few layers are being developed by sensor makers for installation in commercial advanced driver assistance system. The output of a low-end 3-D scanner is completely different from that of a full 3-D scanner and it is rather similar to the output of a 2-D scanner with a single layer. In this paper, a new framework for moving object detection and subsequent tracking using a low-end 3-D scanner with four layers is proposed. The proposed method uses the contours of the objects to obtain a robust association between a detection and a tracking. The proposed method comprises five steps: preprocessing, contour extraction, hypothesis generation, pruning, and moving object detection. In the preprocessing step, outliers, such as the ground or backlights from preceding vehicles, are removed and the scanned points are decomposed into segments, each of which corresponds to a single object. In the track hypothesis generation step, each segment is associated with an existing track maintained over multiple scans. The association method developed here uses the contour shape of the segments and is motivated by the linear programming and dynamic time warping. In the track hypothesis pruning step, unlikely tracks are removed from the hypothesis trees based on the proposed hypothesis scores. In the last step, moving objects are detected based on the track velocity. The proposed method is applied to four challenging real-world scenarios, and its validity is demonstrated via experimentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
短巷完成签到 ,获得积分10
4秒前
牛哥发布了新的文献求助10
6秒前
7秒前
10秒前
猜不猜不完成签到 ,获得积分10
10秒前
菜芽君完成签到,获得积分10
10秒前
杜飞发布了新的文献求助10
10秒前
文静的可仁完成签到,获得积分10
11秒前
fff完成签到 ,获得积分10
11秒前
我吃小饼干完成签到 ,获得积分10
13秒前
15秒前
grace完成签到 ,获得积分10
15秒前
zcm1999完成签到,获得积分10
15秒前
hauru完成签到,获得积分10
19秒前
李爱国应助香菜包采纳,获得10
19秒前
momo完成签到,获得积分10
25秒前
THEO完成签到,获得积分10
25秒前
Unlisted完成签到,获得积分10
27秒前
Cope完成签到 ,获得积分10
28秒前
28秒前
小白完成签到,获得积分10
29秒前
魔幻以菱完成签到 ,获得积分10
30秒前
xxx发布了新的文献求助10
33秒前
蛙蛙应助U87采纳,获得30
33秒前
加菲丰丰完成签到,获得积分0
34秒前
曾予嘉完成签到 ,获得积分10
37秒前
揽月完成签到,获得积分10
40秒前
小袁冲冲冲完成签到,获得积分10
41秒前
小二郎应助陶醉紫菜采纳,获得10
41秒前
gura完成签到 ,获得积分10
42秒前
21完成签到 ,获得积分10
43秒前
43秒前
桐桐应助曾予嘉采纳,获得10
44秒前
xiaohan,JIA完成签到,获得积分10
47秒前
充电宝应助杜飞采纳,获得10
50秒前
50秒前
bigan完成签到,获得积分20
51秒前
顾子墨发布了新的文献求助10
56秒前
菲1208完成签到,获得积分10
56秒前
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356235
求助须知:如何正确求助?哪些是违规求助? 4488073
关于积分的说明 13971611
捐赠科研通 4388906
什么是DOI,文献DOI怎么找? 2411290
邀请新用户注册赠送积分活动 1403833
关于科研通互助平台的介绍 1377655