A New Contour-Based Approach to Moving Object Detection and Tracking Using a Low-End Three-Dimensional Laser Scanner

计算机视觉 扫描仪 激光扫描 人工智能 跟踪(教育) 目标检测 计算机科学 激光器 光学 模式识别(心理学) 物理 心理学 教育学
作者
Jhonghyun An,Baehoon Choi,Hyun-Ju Kim,Euntai Kim
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:68 (8): 7392-7405 被引量:10
标识
DOI:10.1109/tvt.2019.2924268
摘要

Unlike high-end three-dimensional (3-D) scanners with more than 16 layers which are mainly used in academia, low-end 3-D scanners with a few layers are being developed by sensor makers for installation in commercial advanced driver assistance system. The output of a low-end 3-D scanner is completely different from that of a full 3-D scanner and it is rather similar to the output of a 2-D scanner with a single layer. In this paper, a new framework for moving object detection and subsequent tracking using a low-end 3-D scanner with four layers is proposed. The proposed method uses the contours of the objects to obtain a robust association between a detection and a tracking. The proposed method comprises five steps: preprocessing, contour extraction, hypothesis generation, pruning, and moving object detection. In the preprocessing step, outliers, such as the ground or backlights from preceding vehicles, are removed and the scanned points are decomposed into segments, each of which corresponds to a single object. In the track hypothesis generation step, each segment is associated with an existing track maintained over multiple scans. The association method developed here uses the contour shape of the segments and is motivated by the linear programming and dynamic time warping. In the track hypothesis pruning step, unlikely tracks are removed from the hypothesis trees based on the proposed hypothesis scores. In the last step, moving objects are detected based on the track velocity. The proposed method is applied to four challenging real-world scenarios, and its validity is demonstrated via experimentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助javascript采纳,获得10
刚刚
NexusExplorer应助Waris采纳,获得10
1秒前
FashionBoy应助chen采纳,获得10
1秒前
mxy发布了新的文献求助10
1秒前
qianxie发布了新的文献求助10
2秒前
龙傲天发布了新的社区帖子
3秒前
鲁万仇完成签到,获得积分10
3秒前
4秒前
YYYYYY完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
GRQ完成签到 ,获得积分10
6秒前
小鱼快游发布了新的文献求助30
7秒前
7秒前
8秒前
轻轻完成签到 ,获得积分10
8秒前
zhikangzhang完成签到,获得积分10
9秒前
10秒前
冷酷夏真完成签到 ,获得积分10
10秒前
lzc完成签到,获得积分10
10秒前
jinyuqian完成签到,获得积分10
11秒前
虚心青梦发布了新的文献求助10
12秒前
科研通AI6应助jChen采纳,获得10
12秒前
sunshine发布了新的文献求助10
12秒前
故意的秋烟完成签到,获得积分10
13秒前
Literaturecome完成签到,获得积分10
14秒前
15秒前
碧蓝捕发布了新的文献求助30
15秒前
qianxie完成签到,获得积分10
15秒前
月蚀六花发布了新的文献求助10
17秒前
1526完成签到,获得积分10
17秒前
18秒前
20秒前
20秒前
20秒前
小药童应助小熊采纳,获得10
21秒前
21秒前
科研通AI6应助fei采纳,获得10
21秒前
21秒前
甘草三七完成签到,获得积分10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478316
求助须知:如何正确求助?哪些是违规求助? 4580011
关于积分的说明 14371936
捐赠科研通 4508322
什么是DOI,文献DOI怎么找? 2470668
邀请新用户注册赠送积分活动 1457388
关于科研通互助平台的介绍 1431329