A New Contour-Based Approach to Moving Object Detection and Tracking Using a Low-End Three-Dimensional Laser Scanner

计算机视觉 扫描仪 激光扫描 人工智能 跟踪(教育) 目标检测 计算机科学 激光器 光学 模式识别(心理学) 物理 心理学 教育学
作者
Jhonghyun An,Baehoon Choi,Hyun-Ju Kim,Euntai Kim
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:68 (8): 7392-7405 被引量:10
标识
DOI:10.1109/tvt.2019.2924268
摘要

Unlike high-end three-dimensional (3-D) scanners with more than 16 layers which are mainly used in academia, low-end 3-D scanners with a few layers are being developed by sensor makers for installation in commercial advanced driver assistance system. The output of a low-end 3-D scanner is completely different from that of a full 3-D scanner and it is rather similar to the output of a 2-D scanner with a single layer. In this paper, a new framework for moving object detection and subsequent tracking using a low-end 3-D scanner with four layers is proposed. The proposed method uses the contours of the objects to obtain a robust association between a detection and a tracking. The proposed method comprises five steps: preprocessing, contour extraction, hypothesis generation, pruning, and moving object detection. In the preprocessing step, outliers, such as the ground or backlights from preceding vehicles, are removed and the scanned points are decomposed into segments, each of which corresponds to a single object. In the track hypothesis generation step, each segment is associated with an existing track maintained over multiple scans. The association method developed here uses the contour shape of the segments and is motivated by the linear programming and dynamic time warping. In the track hypothesis pruning step, unlikely tracks are removed from the hypothesis trees based on the proposed hypothesis scores. In the last step, moving objects are detected based on the track velocity. The proposed method is applied to four challenging real-world scenarios, and its validity is demonstrated via experimentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
2秒前
张lf完成签到,获得积分20
2秒前
yu完成签到 ,获得积分10
3秒前
舒心谷雪完成签到 ,获得积分10
4秒前
客厅狂欢完成签到,获得积分10
4秒前
5秒前
冰巧完成签到,获得积分10
5秒前
柏林寒冬完成签到,获得积分0
5秒前
俏皮行云完成签到 ,获得积分10
6秒前
efengmo完成签到,获得积分10
7秒前
留胡子的红酒完成签到 ,获得积分10
7秒前
七神之伤发布了新的文献求助10
8秒前
Beebee24完成签到,获得积分10
11秒前
testmanfuxk完成签到,获得积分10
11秒前
12秒前
简绮完成签到 ,获得积分10
12秒前
13秒前
13秒前
狮子座完成签到,获得积分10
13秒前
BGa完成签到,获得积分10
15秒前
Jane完成签到,获得积分10
15秒前
无物完成签到,获得积分10
17秒前
iNk应助Lizhiiiy采纳,获得20
18秒前
小健发布了新的文献求助10
19秒前
20秒前
zzh完成签到 ,获得积分10
23秒前
vwegvwdecaf发布了新的文献求助10
24秒前
H哈完成签到,获得积分10
24秒前
慎默应助sky采纳,获得10
24秒前
linglingling完成签到 ,获得积分10
27秒前
27秒前
27秒前
27秒前
27秒前
友好灵阳完成签到 ,获得积分10
29秒前
亦屿森完成签到,获得积分10
29秒前
大抵是能上岸的完成签到,获得积分10
29秒前
等待若烟发布了新的文献求助10
31秒前
取名叫做利完成签到 ,获得积分10
32秒前
似宁发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499138
求助须知:如何正确求助?哪些是违规求助? 4596150
关于积分的说明 14452711
捐赠科研通 4529291
什么是DOI,文献DOI怎么找? 2481892
邀请新用户注册赠送积分活动 1465918
关于科研通互助平台的介绍 1438802