A New Contour-Based Approach to Moving Object Detection and Tracking Using a Low-End Three-Dimensional Laser Scanner

计算机视觉 扫描仪 激光扫描 人工智能 跟踪(教育) 目标检测 计算机科学 激光器 光学 模式识别(心理学) 物理 心理学 教育学
作者
Jhonghyun An,Baehoon Choi,Hyun-Ju Kim,Euntai Kim
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:68 (8): 7392-7405 被引量:10
标识
DOI:10.1109/tvt.2019.2924268
摘要

Unlike high-end three-dimensional (3-D) scanners with more than 16 layers which are mainly used in academia, low-end 3-D scanners with a few layers are being developed by sensor makers for installation in commercial advanced driver assistance system. The output of a low-end 3-D scanner is completely different from that of a full 3-D scanner and it is rather similar to the output of a 2-D scanner with a single layer. In this paper, a new framework for moving object detection and subsequent tracking using a low-end 3-D scanner with four layers is proposed. The proposed method uses the contours of the objects to obtain a robust association between a detection and a tracking. The proposed method comprises five steps: preprocessing, contour extraction, hypothesis generation, pruning, and moving object detection. In the preprocessing step, outliers, such as the ground or backlights from preceding vehicles, are removed and the scanned points are decomposed into segments, each of which corresponds to a single object. In the track hypothesis generation step, each segment is associated with an existing track maintained over multiple scans. The association method developed here uses the contour shape of the segments and is motivated by the linear programming and dynamic time warping. In the track hypothesis pruning step, unlikely tracks are removed from the hypothesis trees based on the proposed hypothesis scores. In the last step, moving objects are detected based on the track velocity. The proposed method is applied to four challenging real-world scenarios, and its validity is demonstrated via experimentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒一一发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
microtsiu发布了新的文献求助20
2秒前
科研通AI2S应助丑小鸭采纳,获得10
2秒前
小思雅完成签到,获得积分10
2秒前
Jenkin完成签到,获得积分10
2秒前
2秒前
莫西莫西发布了新的文献求助10
2秒前
奋斗人雄完成签到,获得积分10
3秒前
hahada完成签到,获得积分10
3秒前
Almo完成签到,获得积分10
3秒前
星期三不调闹钟完成签到 ,获得积分10
4秒前
4秒前
4秒前
轻风发布了新的文献求助10
4秒前
4秒前
充电宝应助大大怪采纳,获得30
5秒前
jijijibibibi完成签到,获得积分10
6秒前
杨冰完成签到,获得积分10
7秒前
JamesPei应助wlm采纳,获得10
7秒前
领导范儿应助Star1983采纳,获得10
7秒前
7秒前
丘比特应助半夜不睡采纳,获得10
7秒前
可爱的函函应助Jenkin采纳,获得10
7秒前
8秒前
烟雨梦兮发布了新的文献求助10
8秒前
一直很安静完成签到,获得积分10
8秒前
8秒前
轻舞飞扬发布了新的文献求助10
8秒前
lsy发布了新的文献求助10
9秒前
有魅力的梦秋完成签到,获得积分20
9秒前
傻傻的听安完成签到,获得积分10
9秒前
奥特超曼应助刘城采纳,获得10
10秒前
10秒前
egnaro发布了新的文献求助30
11秒前
李健应助轻风采纳,获得10
11秒前
12秒前
高大以南完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582