蛋白质组
数据库搜索引擎
计算生物学
肽
自下而上蛋白质组学
蛋白质组学
深度学习
化学
人工智能
计算机科学
生物
串联质谱法
质谱法
色谱法
搜索引擎
生物化学
蛋白质质谱法
情报检索
基因
作者
Siegfried Gessulat,Tobias Schmidt,Daniel P. Zolg,Patroklos Samaras,Karsten Schnatbaum,Johannes Zerweck,Tobias Knaute,Julia Rechenberger,Bernard Delanghe,Andreas Hühmer,Ulf Reimer,Hans-Christian Ehrlich,Stephan Aiche,Bernhard Küster,Mathias Wilhelm
出处
期刊:Nature Methods
[Springer Nature]
日期:2019-05-27
卷期号:16 (6): 509-518
被引量:674
标识
DOI:10.1038/s41592-019-0426-7
摘要
In mass-spectrometry-based proteomics, the identification and quantification of peptides and proteins heavily rely on sequence database searching or spectral library matching. The lack of accurate predictive models for fragment ion intensities impairs the realization of the full potential of these approaches. Here, we extended the ProteomeTools synthetic peptide library to 550,000 tryptic peptides and 21 million high-quality tandem mass spectra. We trained a deep neural network, termed Prosit, resulting in chromatographic retention time and fragment ion intensity predictions that exceed the quality of the experimental data. Integrating Prosit into database search pipelines led to more identifications at >10× lower false discovery rates. We show the general applicability of Prosit by predicting spectra for proteases other than trypsin, generating spectral libraries for data-independent acquisition and improving the analysis of metaproteomes. Prosit is integrated into ProteomicsDB, allowing search result re-scoring and custom spectral library generation for any organism on the basis of peptide sequence alone. A deep learning–based tool, Prosit, predicts high-quality peptide tandem mass spectra, improving peptide-identification performance compared with that of traditional proteomics analysis methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI