Learning the signatures of the human grasp using a scalable tactile glove

抓住 计算机科学 人工智能 机器人 卷积神经网络 可扩展性 计算机视觉 人机交互 压阻效应 有线手套 触觉传感器 触觉技术 手势 工程类 电气工程 数据库 程序设计语言
作者
Subramanian Sundaram,Petr Kellnhofer,Yunzhu Li,Jun-Yan Zhu,Antonio Torralba,Wojciech Matusik
出处
期刊:Nature [Springer Nature]
卷期号:569 (7758): 698-702 被引量:1056
标识
DOI:10.1038/s41586-019-1234-z
摘要

Humans can feel, weigh and grasp diverse objects, and simultaneously infer their material properties while applying the right amount of force-a challenging set of tasks for a modern robot1. Mechanoreceptor networks that provide sensory feedback and enable the dexterity of the human grasp2 remain difficult to replicate in robots. Whereas computer-vision-based robot grasping strategies3-5 have progressed substantially with the abundance of visual data and emerging machine-learning tools, there are as yet no equivalent sensing platforms and large-scale datasets with which to probe the use of the tactile information that humans rely on when grasping objects. Studying the mechanics of how humans grasp objects will complement vision-based robotic object handling. Importantly, the inability to record and analyse tactile signals currently limits our understanding of the role of tactile information in the human grasp itself-for example, how tactile maps are used to identify objects and infer their properties is unknown6. Here we use a scalable tactile glove and deep convolutional neural networks to show that sensors uniformly distributed over the hand can be used to identify individual objects, estimate their weight and explore the typical tactile patterns that emerge while grasping objects. The sensor array (548 sensors) is assembled on a knitted glove, and consists of a piezoresistive film connected by a network of conductive thread electrodes that are passively probed. Using a low-cost (about US$10) scalable tactile glove sensor array, we record a large-scale tactile dataset with 135,000 frames, each covering the full hand, while interacting with 26 different objects. This set of interactions with different objects reveals the key correspondences between different regions of a human hand while it is manipulating objects. Insights from the tactile signatures of the human grasp-through the lens of an artificial analogue of the natural mechanoreceptor network-can thus aid the future design of prosthetics7, robot grasping tools and human-robot interactions1,8-10.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sule完成签到,获得积分10
1秒前
1秒前
拾壹完成签到,获得积分10
3秒前
开放飞阳完成签到,获得积分10
4秒前
帅气的藏鸟完成签到,获得积分10
6秒前
YOU完成签到 ,获得积分10
8秒前
满意的念柏完成签到,获得积分10
11秒前
八八九九九1完成签到,获得积分10
13秒前
14秒前
醒醒完成签到 ,获得积分10
15秒前
又壮了完成签到 ,获得积分10
17秒前
明理绝悟完成签到 ,获得积分10
17秒前
小昕思完成签到 ,获得积分10
26秒前
zhang完成签到 ,获得积分10
29秒前
CLTTTt完成签到,获得积分10
30秒前
77完成签到 ,获得积分10
34秒前
35秒前
Tang发布了新的文献求助10
40秒前
Dr_Fang完成签到,获得积分10
44秒前
lin123完成签到 ,获得积分10
48秒前
林好人完成签到 ,获得积分10
50秒前
qiaoxi完成签到,获得积分10
52秒前
rsdggsrser完成签到 ,获得积分10
56秒前
靓丽藏花完成签到 ,获得积分10
59秒前
YeMa完成签到,获得积分10
1分钟前
shuwen完成签到 ,获得积分10
1分钟前
WULAVIVA完成签到,获得积分10
1分钟前
仇敌克星完成签到,获得积分10
1分钟前
lemonkim完成签到,获得积分10
1分钟前
qaz111222完成签到 ,获得积分10
1分钟前
灰太狼大王完成签到 ,获得积分10
1分钟前
文静若血完成签到,获得积分10
1分钟前
秋风之墩完成签到,获得积分10
1分钟前
陈一完成签到,获得积分10
1分钟前
Tang发布了新的文献求助10
1分钟前
含光完成签到,获得积分10
1分钟前
紧张的幻桃完成签到,获得积分10
1分钟前
Sleven完成签到,获得积分10
1分钟前
美满的水卉完成签到,获得积分10
1分钟前
优雅的千雁完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561730
求助须知:如何正确求助?哪些是违规求助? 4646763
关于积分的说明 14678983
捐赠科研通 4588208
什么是DOI,文献DOI怎么找? 2517396
邀请新用户注册赠送积分活动 1490657
关于科研通互助平台的介绍 1461765