Learning the signatures of the human grasp using a scalable tactile glove

抓住 计算机科学 人工智能 机器人 卷积神经网络 可扩展性 计算机视觉 人机交互 压阻效应 有线手套 触觉传感器 触觉技术 手势 工程类 电气工程 数据库 程序设计语言
作者
Subramanian Sundaram,Petr Kellnhofer,Yunzhu Li,Jun-Yan Zhu,Antonio Torralba,Wojciech Matusik
出处
期刊:Nature [Springer Nature]
卷期号:569 (7758): 698-702 被引量:803
标识
DOI:10.1038/s41586-019-1234-z
摘要

Humans can feel, weigh and grasp diverse objects, and simultaneously infer their material properties while applying the right amount of force-a challenging set of tasks for a modern robot1. Mechanoreceptor networks that provide sensory feedback and enable the dexterity of the human grasp2 remain difficult to replicate in robots. Whereas computer-vision-based robot grasping strategies3-5 have progressed substantially with the abundance of visual data and emerging machine-learning tools, there are as yet no equivalent sensing platforms and large-scale datasets with which to probe the use of the tactile information that humans rely on when grasping objects. Studying the mechanics of how humans grasp objects will complement vision-based robotic object handling. Importantly, the inability to record and analyse tactile signals currently limits our understanding of the role of tactile information in the human grasp itself-for example, how tactile maps are used to identify objects and infer their properties is unknown6. Here we use a scalable tactile glove and deep convolutional neural networks to show that sensors uniformly distributed over the hand can be used to identify individual objects, estimate their weight and explore the typical tactile patterns that emerge while grasping objects. The sensor array (548 sensors) is assembled on a knitted glove, and consists of a piezoresistive film connected by a network of conductive thread electrodes that are passively probed. Using a low-cost (about US$10) scalable tactile glove sensor array, we record a large-scale tactile dataset with 135,000 frames, each covering the full hand, while interacting with 26 different objects. This set of interactions with different objects reveals the key correspondences between different regions of a human hand while it is manipulating objects. Insights from the tactile signatures of the human grasp-through the lens of an artificial analogue of the natural mechanoreceptor network-can thus aid the future design of prosthetics7, robot grasping tools and human-robot interactions1,8-10.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
5秒前
VVV完成签到,获得积分20
5秒前
9秒前
不配.应助jessie采纳,获得20
13秒前
赵梦鸢完成签到,获得积分10
13秒前
土豆完成签到,获得积分10
13秒前
Duolalala发布了新的文献求助30
15秒前
15秒前
肖窈发布了新的文献求助10
16秒前
咖啡豆应助研友_X89o6n采纳,获得10
18秒前
申思发布了新的文献求助10
19秒前
23秒前
25秒前
从容的天空完成签到,获得积分10
26秒前
WWXWWX发布了新的文献求助10
27秒前
爆米花应助HopeStar采纳,获得10
28秒前
28秒前
钢铁加鲁鲁完成签到,获得积分0
32秒前
优雅的沛春完成签到 ,获得积分10
32秒前
躺平摆烂小饼干完成签到,获得积分10
34秒前
zz发布了新的文献求助10
35秒前
37秒前
St雪完成签到,获得积分10
39秒前
沈海完成签到,获得积分10
39秒前
alex完成签到,获得积分10
40秒前
竹筏过海应助123的小王子采纳,获得30
42秒前
屁颠屁颠_狼完成签到 ,获得积分0
42秒前
HopeStar发布了新的文献求助10
43秒前
小蘑菇应助申思采纳,获得30
44秒前
幸福的笨天使关注了科研通微信公众号
45秒前
SivanNiu完成签到,获得积分20
46秒前
鹿友菌完成签到,获得积分10
46秒前
元锦程完成签到,获得积分10
48秒前
HopeStar完成签到,获得积分10
49秒前
嗯呐应助麻薯头头采纳,获得10
50秒前
52秒前
56秒前
123的小王子完成签到,获得积分20
56秒前
ASZXDW发布了新的文献求助10
56秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137706
求助须知:如何正确求助?哪些是违规求助? 2788609
关于积分的说明 7787778
捐赠科研通 2444975
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043