Learning the signatures of the human grasp using a scalable tactile glove

抓住 计算机科学 人工智能 机器人 卷积神经网络 可扩展性 计算机视觉 人机交互 压阻效应 有线手套 触觉传感器 触觉技术 手势 工程类 电气工程 数据库 程序设计语言
作者
Subramanian Sundaram,Petr Kellnhofer,Yunzhu Li,Jun-Yan Zhu,Antonio Torralba,Wojciech Matusik
出处
期刊:Nature [Nature Portfolio]
卷期号:569 (7758): 698-702 被引量:912
标识
DOI:10.1038/s41586-019-1234-z
摘要

Humans can feel, weigh and grasp diverse objects, and simultaneously infer their material properties while applying the right amount of force-a challenging set of tasks for a modern robot1. Mechanoreceptor networks that provide sensory feedback and enable the dexterity of the human grasp2 remain difficult to replicate in robots. Whereas computer-vision-based robot grasping strategies3-5 have progressed substantially with the abundance of visual data and emerging machine-learning tools, there are as yet no equivalent sensing platforms and large-scale datasets with which to probe the use of the tactile information that humans rely on when grasping objects. Studying the mechanics of how humans grasp objects will complement vision-based robotic object handling. Importantly, the inability to record and analyse tactile signals currently limits our understanding of the role of tactile information in the human grasp itself-for example, how tactile maps are used to identify objects and infer their properties is unknown6. Here we use a scalable tactile glove and deep convolutional neural networks to show that sensors uniformly distributed over the hand can be used to identify individual objects, estimate their weight and explore the typical tactile patterns that emerge while grasping objects. The sensor array (548 sensors) is assembled on a knitted glove, and consists of a piezoresistive film connected by a network of conductive thread electrodes that are passively probed. Using a low-cost (about US$10) scalable tactile glove sensor array, we record a large-scale tactile dataset with 135,000 frames, each covering the full hand, while interacting with 26 different objects. This set of interactions with different objects reveals the key correspondences between different regions of a human hand while it is manipulating objects. Insights from the tactile signatures of the human grasp-through the lens of an artificial analogue of the natural mechanoreceptor network-can thus aid the future design of prosthetics7, robot grasping tools and human-robot interactions1,8-10.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助LI采纳,获得10
2秒前
xzy998应助淡淡夕阳采纳,获得10
2秒前
3秒前
游一完成签到,获得积分10
4秒前
小二郎应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
6秒前
酷炫翠桃应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
6秒前
隐形曼青应助科研通管家采纳,获得30
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
ED应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
8秒前
ShengzhangLiu发布了新的文献求助10
9秒前
sakitima完成签到 ,获得积分10
10秒前
11秒前
怡然凝云完成签到,获得积分10
12秒前
12秒前
领导范儿应助jdjd采纳,获得10
13秒前
张伟完成签到,获得积分10
15秒前
dz应助泽锦臻采纳,获得10
15秒前
秋刀鱼不过期完成签到 ,获得积分10
18秒前
王铂然完成签到,获得积分10
20秒前
冷静尔芙完成签到,获得积分10
20秒前
peterlee完成签到,获得积分10
20秒前
Hello应助现实的从蓉采纳,获得10
20秒前
22秒前
FashionBoy应助王铂然采纳,获得10
23秒前
23秒前
24秒前
26秒前
温温完成签到,获得积分10
29秒前
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991883
求助须知:如何正确求助?哪些是违规求助? 3533014
关于积分的说明 11260344
捐赠科研通 3272297
什么是DOI,文献DOI怎么找? 1805688
邀请新用户注册赠送积分活动 882609
科研通“疑难数据库(出版商)”最低求助积分说明 809425