亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning the signatures of the human grasp using a scalable tactile glove

抓住 计算机科学 人工智能 机器人 卷积神经网络 可扩展性 计算机视觉 人机交互 压阻效应 有线手套 触觉传感器 触觉技术 手势 工程类 电气工程 数据库 程序设计语言
作者
Subramanian Sundaram,Petr Kellnhofer,Yunzhu Li,Jun-Yan Zhu,Antonio Torralba,Wojciech Matusik
出处
期刊:Nature [Nature Portfolio]
卷期号:569 (7758): 698-702 被引量:955
标识
DOI:10.1038/s41586-019-1234-z
摘要

Humans can feel, weigh and grasp diverse objects, and simultaneously infer their material properties while applying the right amount of force-a challenging set of tasks for a modern robot1. Mechanoreceptor networks that provide sensory feedback and enable the dexterity of the human grasp2 remain difficult to replicate in robots. Whereas computer-vision-based robot grasping strategies3-5 have progressed substantially with the abundance of visual data and emerging machine-learning tools, there are as yet no equivalent sensing platforms and large-scale datasets with which to probe the use of the tactile information that humans rely on when grasping objects. Studying the mechanics of how humans grasp objects will complement vision-based robotic object handling. Importantly, the inability to record and analyse tactile signals currently limits our understanding of the role of tactile information in the human grasp itself-for example, how tactile maps are used to identify objects and infer their properties is unknown6. Here we use a scalable tactile glove and deep convolutional neural networks to show that sensors uniformly distributed over the hand can be used to identify individual objects, estimate their weight and explore the typical tactile patterns that emerge while grasping objects. The sensor array (548 sensors) is assembled on a knitted glove, and consists of a piezoresistive film connected by a network of conductive thread electrodes that are passively probed. Using a low-cost (about US$10) scalable tactile glove sensor array, we record a large-scale tactile dataset with 135,000 frames, each covering the full hand, while interacting with 26 different objects. This set of interactions with different objects reveals the key correspondences between different regions of a human hand while it is manipulating objects. Insights from the tactile signatures of the human grasp-through the lens of an artificial analogue of the natural mechanoreceptor network-can thus aid the future design of prosthetics7, robot grasping tools and human-robot interactions1,8-10.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
量子星尘发布了新的文献求助10
28秒前
淡淡的秋柳完成签到 ,获得积分10
35秒前
li完成签到,获得积分10
36秒前
Owen应助Michelle采纳,获得10
37秒前
GPTea举报陈HIAHIA求助涉嫌违规
1分钟前
GPTea举报fanzi求助涉嫌违规
1分钟前
敏静完成签到,获得积分10
1分钟前
1分钟前
2分钟前
yxuan发布了新的文献求助10
2分钟前
上官若男应助yxuan采纳,获得10
2分钟前
2分钟前
fanssw完成签到 ,获得积分0
2分钟前
Michelle发布了新的文献求助10
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
领导范儿应助ARESCI采纳,获得10
3分钟前
哈哈哈完成签到,获得积分10
3分钟前
xLi完成签到,获得积分10
3分钟前
聪慧青曼完成签到 ,获得积分10
3分钟前
Jasper应助hkx采纳,获得10
4分钟前
4分钟前
4分钟前
SciGPT应助文静的曼彤采纳,获得10
4分钟前
hkx发布了新的文献求助10
4分钟前
研究XPD的小麻薯完成签到,获得积分10
4分钟前
4分钟前
kukudou2发布了新的文献求助10
4分钟前
kukudou2完成签到,获得积分20
5分钟前
hkx完成签到,获得积分10
5分钟前
含辰惜应助hkx采纳,获得10
5分钟前
5分钟前
王晨光完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
6分钟前
科研通AI6应助sun采纳,获得10
6分钟前
Vino完成签到,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952358
求助须知:如何正确求助?哪些是违规求助? 4215092
关于积分的说明 13111116
捐赠科研通 3996993
什么是DOI,文献DOI怎么找? 2187723
邀请新用户注册赠送积分活动 1202987
关于科研通互助平台的介绍 1115712