清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Learning the signatures of the human grasp using a scalable tactile glove

抓住 计算机科学 人工智能 机器人 卷积神经网络 可扩展性 计算机视觉 人机交互 压阻效应 有线手套 触觉传感器 触觉技术 手势 工程类 电气工程 数据库 程序设计语言
作者
Subramanian Sundaram,Petr Kellnhofer,Yunzhu Li,Jun-Yan Zhu,Antonio Torralba,Wojciech Matusik
出处
期刊:Nature [Springer Nature]
卷期号:569 (7758): 698-702 被引量:1063
标识
DOI:10.1038/s41586-019-1234-z
摘要

Humans can feel, weigh and grasp diverse objects, and simultaneously infer their material properties while applying the right amount of force-a challenging set of tasks for a modern robot1. Mechanoreceptor networks that provide sensory feedback and enable the dexterity of the human grasp2 remain difficult to replicate in robots. Whereas computer-vision-based robot grasping strategies3-5 have progressed substantially with the abundance of visual data and emerging machine-learning tools, there are as yet no equivalent sensing platforms and large-scale datasets with which to probe the use of the tactile information that humans rely on when grasping objects. Studying the mechanics of how humans grasp objects will complement vision-based robotic object handling. Importantly, the inability to record and analyse tactile signals currently limits our understanding of the role of tactile information in the human grasp itself-for example, how tactile maps are used to identify objects and infer their properties is unknown6. Here we use a scalable tactile glove and deep convolutional neural networks to show that sensors uniformly distributed over the hand can be used to identify individual objects, estimate their weight and explore the typical tactile patterns that emerge while grasping objects. The sensor array (548 sensors) is assembled on a knitted glove, and consists of a piezoresistive film connected by a network of conductive thread electrodes that are passively probed. Using a low-cost (about US$10) scalable tactile glove sensor array, we record a large-scale tactile dataset with 135,000 frames, each covering the full hand, while interacting with 26 different objects. This set of interactions with different objects reveals the key correspondences between different regions of a human hand while it is manipulating objects. Insights from the tactile signatures of the human grasp-through the lens of an artificial analogue of the natural mechanoreceptor network-can thus aid the future design of prosthetics7, robot grasping tools and human-robot interactions1,8-10.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青帝完成签到,获得积分10
刚刚
27秒前
彤彤tong发布了新的文献求助10
31秒前
一壶古酒应助古炮采纳,获得50
32秒前
古炮完成签到,获得积分10
46秒前
wood完成签到,获得积分10
1分钟前
1分钟前
可爱的函函应助彤彤tong采纳,获得10
1分钟前
John完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
GIA发布了新的文献求助10
1分钟前
GHX完成签到 ,获得积分10
1分钟前
着急的猴完成签到 ,获得积分10
1分钟前
122319完成签到 ,获得积分10
2分钟前
酷酷的紫南完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
MGraceLi_sci完成签到,获得积分10
2分钟前
研究新人完成签到,获得积分10
2分钟前
强健的冰棍完成签到 ,获得积分10
2分钟前
2分钟前
眯眯眼的安雁完成签到 ,获得积分10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
乐乐应助科研通管家采纳,获得10
3分钟前
瓣落的碎梦完成签到,获得积分10
3分钟前
王一一完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
Chen完成签到 ,获得积分10
4分钟前
4分钟前
彤彤tong完成签到,获得积分10
4分钟前
彤彤tong发布了新的文献求助10
4分钟前
英姑应助彤彤tong采纳,获得10
4分钟前
Yacob发布了新的文献求助10
5分钟前
欣喜的香菱完成签到 ,获得积分10
5分钟前
5分钟前
herococa应助科研通管家采纳,获得50
5分钟前
安嫔完成签到 ,获得积分10
5分钟前
latadawang完成签到,获得积分10
5分钟前
胡国伦完成签到 ,获得积分10
5分钟前
末末完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658273
求助须知:如何正确求助?哪些是违规求助? 4819845
关于积分的说明 15081225
捐赠科研通 4816814
什么是DOI,文献DOI怎么找? 2577676
邀请新用户注册赠送积分活动 1532554
关于科研通互助平台的介绍 1491260