Learning the signatures of the human grasp using a scalable tactile glove

抓住 计算机科学 人工智能 机器人 卷积神经网络 可扩展性 计算机视觉 人机交互 压阻效应 有线手套 触觉传感器 触觉技术 手势 工程类 电气工程 数据库 程序设计语言
作者
Subramanian Sundaram,Petr Kellnhofer,Yunzhu Li,Jun-Yan Zhu,Antonio Torralba,Wojciech Matusik
出处
期刊:Nature [Springer Nature]
卷期号:569 (7758): 698-702 被引量:1056
标识
DOI:10.1038/s41586-019-1234-z
摘要

Humans can feel, weigh and grasp diverse objects, and simultaneously infer their material properties while applying the right amount of force-a challenging set of tasks for a modern robot1. Mechanoreceptor networks that provide sensory feedback and enable the dexterity of the human grasp2 remain difficult to replicate in robots. Whereas computer-vision-based robot grasping strategies3-5 have progressed substantially with the abundance of visual data and emerging machine-learning tools, there are as yet no equivalent sensing platforms and large-scale datasets with which to probe the use of the tactile information that humans rely on when grasping objects. Studying the mechanics of how humans grasp objects will complement vision-based robotic object handling. Importantly, the inability to record and analyse tactile signals currently limits our understanding of the role of tactile information in the human grasp itself-for example, how tactile maps are used to identify objects and infer their properties is unknown6. Here we use a scalable tactile glove and deep convolutional neural networks to show that sensors uniformly distributed over the hand can be used to identify individual objects, estimate their weight and explore the typical tactile patterns that emerge while grasping objects. The sensor array (548 sensors) is assembled on a knitted glove, and consists of a piezoresistive film connected by a network of conductive thread electrodes that are passively probed. Using a low-cost (about US$10) scalable tactile glove sensor array, we record a large-scale tactile dataset with 135,000 frames, each covering the full hand, while interacting with 26 different objects. This set of interactions with different objects reveals the key correspondences between different regions of a human hand while it is manipulating objects. Insights from the tactile signatures of the human grasp-through the lens of an artificial analogue of the natural mechanoreceptor network-can thus aid the future design of prosthetics7, robot grasping tools and human-robot interactions1,8-10.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
香蕉觅云应助搬砖小土妞采纳,获得10
1秒前
2秒前
卡洛完成签到,获得积分10
2秒前
LHY完成签到,获得积分20
3秒前
zzz完成签到 ,获得积分10
3秒前
琦琦发布了新的文献求助10
4秒前
nxy完成签到 ,获得积分10
4秒前
HL应助现实的曼安采纳,获得10
5秒前
天天发布了新的文献求助80
6秒前
culiucabbage发布了新的文献求助10
7秒前
8秒前
wawu完成签到 ,获得积分10
8秒前
11秒前
SciGPT应助李勤_秦礼采纳,获得10
12秒前
赵晶晶发布了新的文献求助10
12秒前
cryo完成签到 ,获得积分10
13秒前
gan发布了新的文献求助10
14秒前
15秒前
背后的雪卉应助予秋采纳,获得10
15秒前
Hello应助YZ采纳,获得10
15秒前
16秒前
16秒前
QQ发布了新的文献求助10
16秒前
18秒前
无极微光应助kjlee采纳,获得20
19秒前
19秒前
20秒前
literature完成签到 ,获得积分20
20秒前
Hello应助Ninico采纳,获得10
20秒前
欣加发布了新的文献求助10
20秒前
午餐肉完成签到,获得积分10
21秒前
一个完成签到,获得积分10
22秒前
悦耳以旋完成签到,获得积分10
23秒前
赵晶晶完成签到,获得积分10
23秒前
刘佳慧完成签到 ,获得积分10
23秒前
研友_VZG7GZ应助思絮采纳,获得10
23秒前
orixero应助七月采纳,获得10
24秒前
literature关注了科研通微信公众号
24秒前
qiqi发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589801
求助须知:如何正确求助?哪些是违规求助? 4674367
关于积分的说明 14793421
捐赠科研通 4629109
什么是DOI,文献DOI怎么找? 2532421
邀请新用户注册赠送积分活动 1501070
关于科研通互助平台的介绍 1468487