Learning the signatures of the human grasp using a scalable tactile glove

抓住 计算机科学 人工智能 机器人 卷积神经网络 可扩展性 计算机视觉 人机交互 压阻效应 有线手套 触觉传感器 触觉技术 手势 工程类 电气工程 数据库 程序设计语言
作者
Subramanian Sundaram,Petr Kellnhofer,Yunzhu Li,Jun-Yan Zhu,Antonio Torralba,Wojciech Matusik
出处
期刊:Nature [Springer Nature]
卷期号:569 (7758): 698-702 被引量:1056
标识
DOI:10.1038/s41586-019-1234-z
摘要

Humans can feel, weigh and grasp diverse objects, and simultaneously infer their material properties while applying the right amount of force-a challenging set of tasks for a modern robot1. Mechanoreceptor networks that provide sensory feedback and enable the dexterity of the human grasp2 remain difficult to replicate in robots. Whereas computer-vision-based robot grasping strategies3-5 have progressed substantially with the abundance of visual data and emerging machine-learning tools, there are as yet no equivalent sensing platforms and large-scale datasets with which to probe the use of the tactile information that humans rely on when grasping objects. Studying the mechanics of how humans grasp objects will complement vision-based robotic object handling. Importantly, the inability to record and analyse tactile signals currently limits our understanding of the role of tactile information in the human grasp itself-for example, how tactile maps are used to identify objects and infer their properties is unknown6. Here we use a scalable tactile glove and deep convolutional neural networks to show that sensors uniformly distributed over the hand can be used to identify individual objects, estimate their weight and explore the typical tactile patterns that emerge while grasping objects. The sensor array (548 sensors) is assembled on a knitted glove, and consists of a piezoresistive film connected by a network of conductive thread electrodes that are passively probed. Using a low-cost (about US$10) scalable tactile glove sensor array, we record a large-scale tactile dataset with 135,000 frames, each covering the full hand, while interacting with 26 different objects. This set of interactions with different objects reveals the key correspondences between different regions of a human hand while it is manipulating objects. Insights from the tactile signatures of the human grasp-through the lens of an artificial analogue of the natural mechanoreceptor network-can thus aid the future design of prosthetics7, robot grasping tools and human-robot interactions1,8-10.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助坦率千筹采纳,获得10
刚刚
科研通AI6应助mingxiaoli0928采纳,获得10
1秒前
Salieri完成签到,获得积分20
2秒前
学问完成签到,获得积分10
3秒前
略略略完成签到 ,获得积分10
3秒前
4秒前
duoduo7发布了新的文献求助10
4秒前
4秒前
ding应助蓝天采纳,获得10
6秒前
6秒前
微笑千凝发布了新的文献求助10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
8秒前
Salieri发布了新的文献求助10
8秒前
李健应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
蜡笔小新完成签到 ,获得积分10
9秒前
9秒前
Khr1stINK完成签到,获得积分10
9秒前
Fushanyu完成签到 ,获得积分10
11秒前
12秒前
称心薯片完成签到,获得积分10
12秒前
共享精神应助开朗发卡采纳,获得10
12秒前
Zq发布了新的文献求助10
12秒前
13秒前
无名子完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536758
求助须知:如何正确求助?哪些是违规求助? 4624342
关于积分的说明 14591700
捐赠科研通 4564904
什么是DOI,文献DOI怎么找? 2501995
邀请新用户注册赠送积分活动 1480738
关于科研通互助平台的介绍 1451989