Using the UAV-derived NDVI to evaluate spatial and temporal variation of crop phenology atcrop growing season in South Korea

归一化差异植被指数 物候学 环境科学 生长季节 遥感 作物 植被(病理学) 空间变异性 地理 叶面积指数 农学 林业 数学 医学 统计 病理 生物
作者
Dong‐Ho Lee,Jin-Ki Park,Kyong-Ho Shin,Jong-Hwa Park
标识
DOI:10.1117/12.2324959
摘要

In recent years, climate change and other anthropogenic factors have contributed to increased crop blight and harmful insects in South Korea crop fields. The main objective of this research was to develop an integrated method and procedure that can be used by unmanned aerial vehicle (UAV) to derive reliable, cost-effective, timely, and repeatable farm information on agricultural production of the field crop at regional level prior to the harvesting date. An attempt has been made in this study to investigate the role of geo-informatics to discriminate different crops at various levels of classification and monitoring crop growth. This research focuses on the evaluation of spatial and temporal variations in crop phenology at Chungbuk using the UAV image data. Crop canopy spectral data in the growing seasons were measured. UAV imagery combined with Smart Farm Map (SFM) were suggested as promising for use in a national crop monitoring system. The test bed area which located in Cheongju were observed by four bands of UAV mounted sensors. UAV images were acquired 6 times from May 6 to October 15, 2016. The difference of normalized difference vegetation index (NDVI) was analyzed. Results showed that NDVI of UAV were strongly correlated with vegetation vigor and growth. The spatial and temporal NDVI and land use and Land cover (LULC) distribution of the crop field were mapped based on the 4-band combination of UAV imagery. The results of this study, we found that the spatial and temporal variation and correlation with crop phenology, LULC classification, and NDVI relationship. The developed model in this study shows a promising result, which can be useful for forecasting crop vegetation conditions in regional scales. Also, the results suggest that the necessary classification performance can be obtained in most of the phenology at crop growing cases, therefore the analysis could be cost effective. The investment to achieve this seems to be worthwhile.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
靓丽安萱完成签到,获得积分10
刚刚
刚刚
nature24发布了新的文献求助10
刚刚
1秒前
乔乔乔完成签到,获得积分10
2秒前
2秒前
3秒前
R18686226306完成签到,获得积分10
3秒前
4秒前
Orange应助好了采纳,获得10
4秒前
科研通AI2S应助manny采纳,获得10
5秒前
超帅不斜发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
老实觅松完成签到,获得积分10
5秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
8秒前
不安时光完成签到,获得积分20
8秒前
万能图书馆应助爱学习采纳,获得10
8秒前
8秒前
乔乔乔发布了新的文献求助10
8秒前
Harry发布了新的文献求助10
8秒前
英姑应助勤奋的万恶采纳,获得10
9秒前
9秒前
杨怂怂发布了新的文献求助10
9秒前
柇素完成签到,获得积分10
10秒前
Jasper应助mokucyan采纳,获得10
11秒前
12秒前
星辰发布了新的文献求助20
12秒前
splemeth完成签到,获得积分10
12秒前
12秒前
ddd完成签到,获得积分10
12秒前
机智的飞飞完成签到,获得积分10
13秒前
看文献了发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719347
求助须知:如何正确求助?哪些是违规求助? 5256132
关于积分的说明 15288645
捐赠科研通 4869222
什么是DOI,文献DOI怎么找? 2614690
邀请新用户注册赠送积分活动 1564705
关于科研通互助平台的介绍 1521914