Using the UAV-derived NDVI to evaluate spatial and temporal variation of crop phenology atcrop growing season in South Korea

归一化差异植被指数 物候学 环境科学 生长季节 遥感 作物 植被(病理学) 空间变异性 地理 叶面积指数 农学 林业 数学 统计 生物 病理 医学
作者
Dong‐Ho Lee,Jin-Ki Park,Kyong-Ho Shin,Jong-Hwa Park
标识
DOI:10.1117/12.2324959
摘要

In recent years, climate change and other anthropogenic factors have contributed to increased crop blight and harmful insects in South Korea crop fields. The main objective of this research was to develop an integrated method and procedure that can be used by unmanned aerial vehicle (UAV) to derive reliable, cost-effective, timely, and repeatable farm information on agricultural production of the field crop at regional level prior to the harvesting date. An attempt has been made in this study to investigate the role of geo-informatics to discriminate different crops at various levels of classification and monitoring crop growth. This research focuses on the evaluation of spatial and temporal variations in crop phenology at Chungbuk using the UAV image data. Crop canopy spectral data in the growing seasons were measured. UAV imagery combined with Smart Farm Map (SFM) were suggested as promising for use in a national crop monitoring system. The test bed area which located in Cheongju were observed by four bands of UAV mounted sensors. UAV images were acquired 6 times from May 6 to October 15, 2016. The difference of normalized difference vegetation index (NDVI) was analyzed. Results showed that NDVI of UAV were strongly correlated with vegetation vigor and growth. The spatial and temporal NDVI and land use and Land cover (LULC) distribution of the crop field were mapped based on the 4-band combination of UAV imagery. The results of this study, we found that the spatial and temporal variation and correlation with crop phenology, LULC classification, and NDVI relationship. The developed model in this study shows a promising result, which can be useful for forecasting crop vegetation conditions in regional scales. Also, the results suggest that the necessary classification performance can be obtained in most of the phenology at crop growing cases, therefore the analysis could be cost effective. The investment to achieve this seems to be worthwhile.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xuxu完成签到 ,获得积分10
1秒前
2秒前
毛毛虫发布了新的文献求助10
2秒前
科研通AI5应助朴斓采纳,获得10
3秒前
陈彦冰完成签到,获得积分10
3秒前
tianny完成签到,获得积分10
4秒前
浪迹天涯发布了新的文献求助10
5秒前
星星发布了新的文献求助10
5秒前
李瑞瑞完成签到,获得积分10
6秒前
6秒前
8秒前
星辰大海应助jy采纳,获得10
8秒前
9秒前
我是站长才怪应助Khr1stINK采纳,获得10
9秒前
10秒前
xh完成签到,获得积分10
11秒前
para_团结完成签到,获得积分10
12秒前
怡然剑成发布了新的文献求助10
12秒前
13秒前
13秒前
ipeakkka发布了新的文献求助10
13秒前
George完成签到,获得积分10
15秒前
WDK完成签到,获得积分10
15秒前
情怀应助敏感的芷采纳,获得10
15秒前
Orange应助方勇飞采纳,获得10
16秒前
FashionBoy应助烂漫驳采纳,获得10
16秒前
17秒前
18秒前
大鱼完成签到,获得积分10
18秒前
18秒前
lu完成签到,获得积分10
19秒前
Murphy完成签到 ,获得积分10
19秒前
斯文败类应助大方嵩采纳,获得10
19秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
充电宝应助科研通管家采纳,获得10
20秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
丘比特应助科研通管家采纳,获得30
20秒前
hh应助科研通管家采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824