Using the UAV-derived NDVI to evaluate spatial and temporal variation of crop phenology atcrop growing season in South Korea

归一化差异植被指数 物候学 环境科学 生长季节 遥感 作物 植被(病理学) 空间变异性 地理 叶面积指数 农学 林业 数学 医学 统计 病理 生物
作者
Dong‐Ho Lee,Jin-Ki Park,Kyong-Ho Shin,Jong-Hwa Park
标识
DOI:10.1117/12.2324959
摘要

In recent years, climate change and other anthropogenic factors have contributed to increased crop blight and harmful insects in South Korea crop fields. The main objective of this research was to develop an integrated method and procedure that can be used by unmanned aerial vehicle (UAV) to derive reliable, cost-effective, timely, and repeatable farm information on agricultural production of the field crop at regional level prior to the harvesting date. An attempt has been made in this study to investigate the role of geo-informatics to discriminate different crops at various levels of classification and monitoring crop growth. This research focuses on the evaluation of spatial and temporal variations in crop phenology at Chungbuk using the UAV image data. Crop canopy spectral data in the growing seasons were measured. UAV imagery combined with Smart Farm Map (SFM) were suggested as promising for use in a national crop monitoring system. The test bed area which located in Cheongju were observed by four bands of UAV mounted sensors. UAV images were acquired 6 times from May 6 to October 15, 2016. The difference of normalized difference vegetation index (NDVI) was analyzed. Results showed that NDVI of UAV were strongly correlated with vegetation vigor and growth. The spatial and temporal NDVI and land use and Land cover (LULC) distribution of the crop field were mapped based on the 4-band combination of UAV imagery. The results of this study, we found that the spatial and temporal variation and correlation with crop phenology, LULC classification, and NDVI relationship. The developed model in this study shows a promising result, which can be useful for forecasting crop vegetation conditions in regional scales. Also, the results suggest that the necessary classification performance can be obtained in most of the phenology at crop growing cases, therefore the analysis could be cost effective. The investment to achieve this seems to be worthwhile.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助kolico采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
搜集达人应助zbr采纳,获得10
2秒前
英姑应助LIN96T采纳,获得10
2秒前
xu完成签到,获得积分10
2秒前
2秒前
Tess发布了新的文献求助10
3秒前
3秒前
3秒前
5秒前
充电宝应助冷静水蓝采纳,获得10
5秒前
5秒前
zhonglv7应助漂亮的乐松采纳,获得20
5秒前
5秒前
和谐青柏应助tao采纳,获得10
6秒前
6秒前
科研小白完成签到 ,获得积分10
6秒前
6秒前
咩咩发布了新的文献求助10
7秒前
7秒前
Mida应助jason采纳,获得10
7秒前
Anode关注了科研通微信公众号
7秒前
JamesPei应助Tess采纳,获得10
7秒前
Chuu♡完成签到,获得积分10
8秒前
徐佳乐完成签到,获得积分10
8秒前
沉静的黎昕完成签到,获得积分10
8秒前
英姑应助啊懂采纳,获得10
8秒前
8秒前
孙笑川完成签到,获得积分10
8秒前
8秒前
浮游应助阔达的大开采纳,获得10
9秒前
阿尔托莉雅完成签到,获得积分10
9秒前
武小伟完成签到,获得积分20
9秒前
共享精神应助研友_LOq3VZ采纳,获得10
9秒前
9秒前
Yuki发布了新的文献求助10
10秒前
云宝发布了新的文献求助10
10秒前
平淡依玉完成签到,获得积分10
11秒前
12秒前
Rachel发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853