内科学
内分泌学
白色脂肪组织
脂肪细胞
胰岛素抵抗
罗格列酮
分解代谢
脂肪组织
mTORC1型
生物
支链氨基酸
胰岛素
葡萄糖稳态
褐色脂肪组织
IRS1
胰岛素受体
新陈代谢
磷酸化
蛋白激酶B
生物化学
医学
氨基酸
亮氨酸
作者
Pierre-Gilles Blanchard,Roger William Fernandes Moreira,Érique Castro,Alexandre Caron,Marie‐Pier Côté,Mauro Andrade,Tiago E. Oliveira,Milene Ortiz‐Silva,Álbert S. Peixoto,F. C. F. Dias,Yves Gélinas,Renata Guerra‐Sá,Yves Deshaies,William T. Festuccia
标识
DOI:10.1016/j.metabol.2018.09.007
摘要
Abstract
Objective
We investigated whether PPARγ modulates adipose tissue BCAA metabolism, and whether this mediates the attenuation of obesity-associated insulin resistance induced by pharmacological PPARγ activation. Methods
Mice with adipocyte deletion of one or two PPARγ copies fed a chow diet and rats fed either chow, or high fat (HF) or HF supplemented with BCAA (HF/BCAA) diets treated with rosiglitazone (30 or 15 mg/kg/day, 14 days) were evaluated for glucose and BCAA homeostasis. Results
Adipocyte deletion of one PPARγ copy increased mice serum BCAA and reduced inguinal white (iWAT) and brown (BAT) adipose tissue BCAA incorporation into triacylglycerol, as well as mRNA levels of branched-chain aminotransferase (BCAT)2 and branched-chain α-ketoacid dehydrogenase (BCKDH) complex subunits. Adipocyte deletion of two PPARγ copies induced lipodystrophy, severe glucose intolerance and markedly increased serum BCAA. Rosiglitazone abolished the increase in serum BCAA induced by adipocyte PPARγ deletion. In rats, HF increased serum BCAA, such levels being further increased by BCAA supplementation. Rosiglitazone, independently of diet, lowered serum BCAA and upregulated iWAT and BAT BCAT and BCKDH activities. This was associated with a reduction in mTORC1-dependent inhibitory serine phosphorylation of IRS1 in skeletal muscle and whole-body insulin resistance evaluated by HOMA-IR. Conclusions
PPARγ, through the regulation of both BAT and iWAT BCAA catabolism in lipoeutrophic mice and muscle insulin responsiveness and proteolysis in lipodystrophic mice, is a major determinant of circulating BCAA levels. PPARγ agonism, therefore, may improve whole-body and muscle insulin sensitivity by reducing blood BCAA, alleviating mTORC1-mediated inhibitory IRS1 phosphorylation.
科研通智能强力驱动
Strongly Powered by AbleSci AI