Complex-YOLO: An Euler-Region-Proposal for Real-Time 3D Object Detection on Point Clouds

计算机科学 点云 人工智能 目标检测 计算机视觉 水准点(测量) 对象(语法) 姿势 模式识别(心理学) 大地测量学 地理
作者
Martín Simón,Stefan Milz,Karl Amende,Horst–Michael Groß
出处
期刊:Lecture Notes in Computer Science 卷期号:: 197-209 被引量:283
标识
DOI:10.1007/978-3-030-11009-3_11
摘要

Lidar based 3D object detection is inevitable for autonomous driving, because it directly links to environmental understanding and therefore builds the base for prediction and motion planning. The capacity of inferencing highly sparse 3D data in real-time is an ill-posed problem for lots of other application areas besides automated vehicles, e.g. augmented reality, personal robotics or industrial automation. We introduce Complex-YOLO, a state of the art real-time 3D object detection network on point clouds only. In this work, we describe a network that expands YOLOv2, a fast 2D standard object detector for RGB images, by a specific complex regression strategy to estimate multi-class 3D boxes in Cartesian space. Thus, we propose a specific Euler-Region-Proposal Network (E-RPN) to estimate the pose of the object by adding an imaginary and a real fraction to the regression network. This ends up in a closed complex space and avoids singularities, which occur by single angle estimations. The E-RPN supports to generalize well during training. Our experiments on the KITTI benchmark suite show that we outperform current leading methods for 3D object detection specifically in terms of efficiency. We achieve state of the art results for cars, pedestrians and cyclists by being more than five times faster than the fastest competitor. Further, our model is capable of estimating all eight KITTI-classes, including Vans, Trucks or sitting pedestrians simultaneously with high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
刚刚
珃苒冉`应助科研通管家采纳,获得10
刚刚
zsyhcl应助科研通管家采纳,获得10
刚刚
刚刚
传奇3应助小鱼采纳,获得10
刚刚
科目三应助科研通管家采纳,获得10
刚刚
Huang完成签到,获得积分10
1秒前
无极微光应助科研通管家采纳,获得10
1秒前
ylll应助科研通管家采纳,获得10
1秒前
1秒前
隐形曼青应助Navial30采纳,获得10
1秒前
1秒前
管遥发布了新的文献求助20
1秒前
1秒前
2秒前
嘟嘟发布了新的文献求助10
2秒前
王玥1266完成签到,获得积分10
2秒前
热情嘉懿完成签到,获得积分10
2秒前
英吉利25发布了新的文献求助10
2秒前
Qi半仙发布了新的文献求助10
4秒前
LJQ完成签到,获得积分10
4秒前
科研的神发布了新的文献求助10
4秒前
4秒前
CipherSage应助hpj采纳,获得10
4秒前
L111完成签到,获得积分20
5秒前
5秒前
沉静怀绿关注了科研通微信公众号
5秒前
windmelody完成签到,获得积分10
6秒前
6秒前
王玥1266发布了新的文献求助10
7秒前
Meddy发布了新的文献求助20
7秒前
科研通AI2S应助颜凡桃采纳,获得10
7秒前
深情安青应助Grace采纳,获得10
8秒前
gyh发布了新的文献求助10
8秒前
hijuddy完成签到,获得积分20
8秒前
Qi半仙完成签到,获得积分10
8秒前
meltconstraint完成签到,获得积分10
9秒前
赵凯完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
欢喜昊焱发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480228
求助须知:如何正确求助?哪些是违规求助? 4581437
关于积分的说明 14380635
捐赠科研通 4510045
什么是DOI,文献DOI怎么找? 2471647
邀请新用户注册赠送积分活动 1458035
关于科研通互助平台的介绍 1431786