Complex-YOLO: An Euler-Region-Proposal for Real-Time 3D Object Detection on Point Clouds

计算机科学 点云 人工智能 目标检测 计算机视觉 水准点(测量) 对象(语法) 姿势 模式识别(心理学) 大地测量学 地理
作者
Martín Simón,Stefan Milz,Karl Amende,Horst–Michael Groß
出处
期刊:Lecture Notes in Computer Science 卷期号:: 197-209 被引量:283
标识
DOI:10.1007/978-3-030-11009-3_11
摘要

Lidar based 3D object detection is inevitable for autonomous driving, because it directly links to environmental understanding and therefore builds the base for prediction and motion planning. The capacity of inferencing highly sparse 3D data in real-time is an ill-posed problem for lots of other application areas besides automated vehicles, e.g. augmented reality, personal robotics or industrial automation. We introduce Complex-YOLO, a state of the art real-time 3D object detection network on point clouds only. In this work, we describe a network that expands YOLOv2, a fast 2D standard object detector for RGB images, by a specific complex regression strategy to estimate multi-class 3D boxes in Cartesian space. Thus, we propose a specific Euler-Region-Proposal Network (E-RPN) to estimate the pose of the object by adding an imaginary and a real fraction to the regression network. This ends up in a closed complex space and avoids singularities, which occur by single angle estimations. The E-RPN supports to generalize well during training. Our experiments on the KITTI benchmark suite show that we outperform current leading methods for 3D object detection specifically in terms of efficiency. We achieve state of the art results for cars, pedestrians and cyclists by being more than five times faster than the fastest competitor. Further, our model is capable of estimating all eight KITTI-classes, including Vans, Trucks or sitting pedestrians simultaneously with high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助按时下班采纳,获得10
刚刚
希望天下0贩的0应助Ge采纳,获得10
1秒前
catch完成签到,获得积分10
1秒前
科研通AI2S应助phil采纳,获得10
1秒前
搜集达人应助简单的香菇采纳,获得10
2秒前
_37_发布了新的文献求助10
2秒前
多读文献多做实验多搞计算完成签到,获得积分10
2秒前
wanci应助Bingrrrr采纳,获得20
2秒前
领导范儿应助vvei采纳,获得10
2秒前
滴滴滴完成签到,获得积分20
3秒前
务实如萱完成签到,获得积分20
3秒前
丘比特应助judy采纳,获得20
3秒前
YY发布了新的文献求助10
3秒前
Leonardi给荡乎宇宙如虚舟的求助进行了留言
4秒前
丘比特应助syl采纳,获得10
4秒前
swy完成签到,获得积分10
4秒前
5秒前
小柠檬发布了新的文献求助10
6秒前
dichunxia完成签到,获得积分10
6秒前
7秒前
无花果应助小郭采纳,获得10
7秒前
AL11完成签到,获得积分10
8秒前
有热心愿意完成签到,获得积分10
9秒前
负责丹亦完成签到,获得积分10
9秒前
123发布了新的文献求助20
9秒前
奇妙的皮皮皮完成签到,获得积分10
9秒前
知足肠乐完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
菠萝完成签到 ,获得积分10
11秒前
12秒前
滴滴滴发布了新的文献求助10
12秒前
安心完成签到,获得积分10
13秒前
xiaojiesi发布了新的文献求助10
14秒前
14秒前
15秒前
义气尔安发布了新的文献求助10
15秒前
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148466
求助须知:如何正确求助?哪些是违规求助? 2799588
关于积分的说明 7836005
捐赠科研通 2456991
什么是DOI,文献DOI怎么找? 1307679
科研通“疑难数据库(出版商)”最低求助积分说明 628245
版权声明 601655