A review of cellular automata models for crowd evacuation

人群 细胞自动机 可扩展性 计算机科学 领域(数学) 简单(哲学) 数据科学 风险分析(工程) 运筹学 人工智能 计算机安全 工程类 认识论 纯数学 哲学 数据库 医学 数学
作者
Yang Li,Maoyin Chen,Zhan Dou,Xiaoping Zheng,Yuan Cheng,Ahmed Mébarki
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier BV]
卷期号:526: 120752-120752 被引量:130
标识
DOI:10.1016/j.physa.2019.03.117
摘要

With the increasing of risk potential in crowded places, evacuation management becomes practically important to ensure the safety of crowds. The studies of crowd evacuation in normal or emergency situations have become a hot topic. Due to the distinct advantages of high efficiency, strong scalability and simple implementation, cellular automata models (CA) have become one of the most widely-used models for evacuation. However, the practical requirements of evacuation propose some important challenges for CA models, for example, to accurately characterize both position and velocity of individuals, to depict environments and accidents, and to describe human behaviors. In the last 20 years, there are many studies aiming at resolving the above challenges. Starting from the challenges mentioned above, this paper tries to give a review of CA models, specially used for crowd evacuation. Firstly, we give an overview of CA models for evacuation, and put forward research paradigm, modeling framework and classification of CA models. The models used for evacuation are classified into three kinds of categories, i.e. lattice gas model, floor field model, and other field-based models. The last category includes potential field model, electrostatic-induced potential field model, cost potential field model, etc. Then, three main challenges of CA models for evacuation are presented, and the improvements for each type of challenge are summarized. Typical simulation scenarios and research issues are further proposed. Finally, the advantages and disadvantages of CA models are illustrated from the aspects of implementation, performance, scalability, accuracy and applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
仪飞冲天小女警完成签到,获得积分10
2秒前
列苑苑发布了新的文献求助10
2秒前
2秒前
2秒前
小K发布了新的文献求助10
3秒前
明理寄容发布了新的文献求助10
5秒前
淼淼完成签到,获得积分10
5秒前
xxh完成签到,获得积分10
6秒前
7秒前
风清扬发布了新的文献求助10
7秒前
灿星发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
CipherSage应助祁郁郁采纳,获得10
10秒前
10秒前
10秒前
ww发布了新的文献求助10
11秒前
英姑应助靓丽雁风采纳,获得10
12秒前
WNL发布了新的文献求助10
12秒前
hellokk发布了新的文献求助10
12秒前
张泽林完成签到,获得积分10
12秒前
Zzzjjj123发布了新的文献求助10
13秒前
dd发布了新的文献求助10
14秒前
15秒前
LIAN发布了新的文献求助10
15秒前
月蚀六花发布了新的文献求助10
16秒前
友好的天奇完成签到,获得积分10
16秒前
可爱的函函应助ww采纳,获得10
16秒前
ziwei发布了新的文献求助10
17秒前
丫丫完成签到 ,获得积分10
20秒前
renshiq完成签到,获得积分10
22秒前
刘尚韬完成签到,获得积分10
22秒前
愉快谷芹完成签到 ,获得积分10
23秒前
传奇3应助月蚀六花采纳,获得10
26秒前
irisy发布了新的文献求助20
26秒前
28秒前
4444完成签到,获得积分10
29秒前
华仔应助美美桑内采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5061433
求助须知:如何正确求助?哪些是违规求助? 4285459
关于积分的说明 13354590
捐赠科研通 4103331
什么是DOI,文献DOI怎么找? 2246615
邀请新用户注册赠送积分活动 1252277
关于科研通互助平台的介绍 1183203