A review of cellular automata models for crowd evacuation

人群 细胞自动机 可扩展性 计算机科学 领域(数学) 简单(哲学) 数据科学 风险分析(工程) 运筹学 人工智能 计算机安全 工程类 认识论 纯数学 哲学 数据库 医学 数学
作者
Yang Li,Maoyin Chen,Zhan Dou,Xiaoping Zheng,Yuan Cheng,Ahmed Mébarki
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier BV]
卷期号:526: 120752-120752 被引量:130
标识
DOI:10.1016/j.physa.2019.03.117
摘要

With the increasing of risk potential in crowded places, evacuation management becomes practically important to ensure the safety of crowds. The studies of crowd evacuation in normal or emergency situations have become a hot topic. Due to the distinct advantages of high efficiency, strong scalability and simple implementation, cellular automata models (CA) have become one of the most widely-used models for evacuation. However, the practical requirements of evacuation propose some important challenges for CA models, for example, to accurately characterize both position and velocity of individuals, to depict environments and accidents, and to describe human behaviors. In the last 20 years, there are many studies aiming at resolving the above challenges. Starting from the challenges mentioned above, this paper tries to give a review of CA models, specially used for crowd evacuation. Firstly, we give an overview of CA models for evacuation, and put forward research paradigm, modeling framework and classification of CA models. The models used for evacuation are classified into three kinds of categories, i.e. lattice gas model, floor field model, and other field-based models. The last category includes potential field model, electrostatic-induced potential field model, cost potential field model, etc. Then, three main challenges of CA models for evacuation are presented, and the improvements for each type of challenge are summarized. Typical simulation scenarios and research issues are further proposed. Finally, the advantages and disadvantages of CA models are illustrated from the aspects of implementation, performance, scalability, accuracy and applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
高高完成签到 ,获得积分10
1秒前
JoshuaChen发布了新的文献求助10
1秒前
ww完成签到,获得积分10
1秒前
CodeCraft应助宋晓静采纳,获得10
1秒前
就瞅你发布了新的文献求助10
2秒前
orixero应助uilyang采纳,获得30
2秒前
xidongdong关注了科研通微信公众号
2秒前
kang完成签到,获得积分10
2秒前
李健应助毛子涵采纳,获得10
2秒前
天天快乐应助笑点低的不采纳,获得10
3秒前
4秒前
4秒前
4秒前
5秒前
yian007完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
JasonSun完成签到,获得积分10
7秒前
7秒前
SciGPT应助缓慢易云采纳,获得10
8秒前
xuxu发布了新的文献求助20
8秒前
8秒前
8秒前
侯美琪完成签到 ,获得积分10
8秒前
9秒前
9秒前
苹果发布了新的文献求助10
9秒前
12334发布了新的文献求助10
9秒前
ww发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
大个应助渊_采纳,获得10
10秒前
10秒前
RockRedfoo完成签到 ,获得积分10
10秒前
scvsdz发布了新的文献求助10
11秒前
11秒前
Scidog完成签到,获得积分0
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582