A review of cellular automata models for crowd evacuation

人群 细胞自动机 可扩展性 计算机科学 领域(数学) 简单(哲学) 数据科学 风险分析(工程) 运筹学 人工智能 计算机安全 工程类 医学 哲学 数学 认识论 数据库 纯数学
作者
Yang Li,Maoyin Chen,Zhan Dou,Xiaoping Zheng,Yuan Cheng,Ahmed Mébarki
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:526: 120752-120752 被引量:130
标识
DOI:10.1016/j.physa.2019.03.117
摘要

With the increasing of risk potential in crowded places, evacuation management becomes practically important to ensure the safety of crowds. The studies of crowd evacuation in normal or emergency situations have become a hot topic. Due to the distinct advantages of high efficiency, strong scalability and simple implementation, cellular automata models (CA) have become one of the most widely-used models for evacuation. However, the practical requirements of evacuation propose some important challenges for CA models, for example, to accurately characterize both position and velocity of individuals, to depict environments and accidents, and to describe human behaviors. In the last 20 years, there are many studies aiming at resolving the above challenges. Starting from the challenges mentioned above, this paper tries to give a review of CA models, specially used for crowd evacuation. Firstly, we give an overview of CA models for evacuation, and put forward research paradigm, modeling framework and classification of CA models. The models used for evacuation are classified into three kinds of categories, i.e. lattice gas model, floor field model, and other field-based models. The last category includes potential field model, electrostatic-induced potential field model, cost potential field model, etc. Then, three main challenges of CA models for evacuation are presented, and the improvements for each type of challenge are summarized. Typical simulation scenarios and research issues are further proposed. Finally, the advantages and disadvantages of CA models are illustrated from the aspects of implementation, performance, scalability, accuracy and applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yeah完成签到,获得积分10
1秒前
无花果应助郭倩采纳,获得10
1秒前
Hello应助璀璨采纳,获得10
1秒前
1秒前
思源应助李小宁采纳,获得10
2秒前
FKVB_完成签到 ,获得积分10
3秒前
清新的马里奥完成签到 ,获得积分10
4秒前
ZXD1989驳回了wlscj应助
4秒前
5秒前
Zxtzzzzz发布了新的文献求助10
6秒前
情怀应助lsc采纳,获得10
6秒前
重要的安寒完成签到,获得积分20
6秒前
7秒前
8秒前
Try完成签到,获得积分10
10秒前
10秒前
科研通AI6应助重要的安寒采纳,获得30
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
烟花应助meng采纳,获得10
13秒前
xalone发布了新的文献求助10
13秒前
13秒前
22完成签到,获得积分10
14秒前
14秒前
蒲公英发布了新的文献求助10
14秒前
Ghy完成签到,获得积分10
14秒前
浮游应助芷兰丁香采纳,获得10
15秒前
浮游应助wjy321采纳,获得10
16秒前
16秒前
璀璨完成签到,获得积分10
17秒前
17秒前
17秒前
17秒前
寂寞的惜灵完成签到,获得积分10
17秒前
靓丽瓦驴发布了新的文献求助10
18秒前
悦耳听芹完成签到 ,获得积分10
18秒前
xalone完成签到,获得积分10
19秒前
852应助qingzhiwu采纳,获得10
19秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480303
求助须知:如何正确求助?哪些是违规求助? 4581518
关于积分的说明 14380905
捐赠科研通 4510074
什么是DOI,文献DOI怎么找? 2471649
邀请新用户注册赠送积分活动 1458040
关于科研通互助平台的介绍 1431812