Deep Learning on Computerized Analysis of Chronic Obstructive Pulmonary Disease

慢性阻塞性肺病 肺病 计算机科学 深度学习 机器学习 特征(语言学) 希尔伯特变换 人工智能 医学 特征提取 语音识别 模式识别(心理学) 内科学 电信 哲学 光谱密度 语言学
作者
Gokhan Altan,Yakup Kutlu,Novruz Allahverdi
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (5): 1344-1350 被引量:63
标识
DOI:10.1109/jbhi.2019.2931395
摘要

Chronic obstructive pulmonary disease (COPD) is one of the deadliest diseases in the world. Because COPD is an incurable disease and requires considerable time to be diagnosed even by an experienced specialist, it becomes important to provide analysis abnormalities in simple ways. The aim of the study is comparing multiple machine learning algorithms for the early diagnosis of COPD using multi-channel lung sounds.Deep learning is an efficient machine-learning algorithm, which comprises unsupervised training to reduce optimization and supervised training by a feature-based distribution of classification parameters. This study focuses on analyzing multichannel lung sounds using statistical features of frequency modulations that are extracted using the Hilbert-Huang transform.Deep learning algorithm was used in the classification stage of the proposed model to separate the patients with COPD and healthy subjects. The proposed DL model with the Hilbert-Huang transform based statistical features was successful in achieving high classification performance rates of 93.67%, 91%, and 96.33% for accuracy, sensitivity, and specificity, respectively.The proposed computerized analysis of the multi-channel lung sounds using DL algorithms provides a standardized assessment with high classification performance.Our study is a pioneer study that directly focuses on the lung sounds to separate COPD and non-COPD patients. Analyzing 12-channel lung sounds gives the advantages of assessing the entire lung obstructions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
不上课不行完成签到,获得积分10
1秒前
再干一杯完成签到,获得积分10
1秒前
2秒前
汉堡包应助rudjs采纳,获得10
3秒前
3秒前
zsyzxb发布了新的文献求助10
4秒前
东东发布了新的文献求助10
4秒前
zena92发布了新的文献求助10
5秒前
锤子米完成签到,获得积分10
5秒前
5秒前
赤练仙子完成签到,获得积分10
7秒前
MnO2fff应助zsyzxb采纳,获得20
10秒前
kingwill应助zsyzxb采纳,获得20
10秒前
顺利鱼完成签到,获得积分10
11秒前
13秒前
14秒前
Xx.完成签到,获得积分10
15秒前
星辰大海应助内向凌兰采纳,获得10
15秒前
15秒前
wuzhizhiya完成签到,获得积分10
16秒前
17秒前
rudjs发布了新的文献求助10
17秒前
20秒前
Ava应助何糖采纳,获得10
20秒前
桐桐应助美丽的芷烟采纳,获得10
20秒前
野子完成签到,获得积分10
21秒前
情怀应助小D采纳,获得30
22秒前
yuan发布了新的文献求助10
22秒前
berry发布了新的文献求助10
23秒前
23秒前
淡淡采白发布了新的文献求助10
24秒前
思源应助勤恳慕蕊采纳,获得10
24秒前
知犯何逆完成签到 ,获得积分10
25秒前
啊哈完成签到,获得积分10
25秒前
26秒前
26秒前
Draven完成签到 ,获得积分10
26秒前
tmpstlml发布了新的文献求助10
27秒前
张红梨完成签到,获得积分10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808