Deep Learning on Computerized Analysis of Chronic Obstructive Pulmonary Disease

慢性阻塞性肺病 肺病 计算机科学 深度学习 机器学习 特征(语言学) 希尔伯特变换 人工智能 医学 特征提取 语音识别 模式识别(心理学) 内科学 电信 哲学 光谱密度 语言学
作者
Gokhan Altan,Yakup Kutlu,Novruz Allahverdi
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (5): 1344-1350 被引量:63
标识
DOI:10.1109/jbhi.2019.2931395
摘要

Chronic obstructive pulmonary disease (COPD) is one of the deadliest diseases in the world. Because COPD is an incurable disease and requires considerable time to be diagnosed even by an experienced specialist, it becomes important to provide analysis abnormalities in simple ways. The aim of the study is comparing multiple machine learning algorithms for the early diagnosis of COPD using multi-channel lung sounds.Deep learning is an efficient machine-learning algorithm, which comprises unsupervised training to reduce optimization and supervised training by a feature-based distribution of classification parameters. This study focuses on analyzing multichannel lung sounds using statistical features of frequency modulations that are extracted using the Hilbert-Huang transform.Deep learning algorithm was used in the classification stage of the proposed model to separate the patients with COPD and healthy subjects. The proposed DL model with the Hilbert-Huang transform based statistical features was successful in achieving high classification performance rates of 93.67%, 91%, and 96.33% for accuracy, sensitivity, and specificity, respectively.The proposed computerized analysis of the multi-channel lung sounds using DL algorithms provides a standardized assessment with high classification performance.Our study is a pioneer study that directly focuses on the lung sounds to separate COPD and non-COPD patients. Analyzing 12-channel lung sounds gives the advantages of assessing the entire lung obstructions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助Yi采纳,获得10
刚刚
ww4566发布了新的文献求助10
1秒前
2秒前
xjcy应助干净昊强采纳,获得10
2秒前
加肥猫1992完成签到,获得积分10
3秒前
田様应助abbyi采纳,获得30
4秒前
共享精神应助二行采纳,获得10
4秒前
zzt发布了新的文献求助10
4秒前
故里发布了新的文献求助10
5秒前
领导范儿应助Jun55采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得30
6秒前
慕青应助科研通管家采纳,获得10
6秒前
从容万恶完成签到,获得积分10
6秒前
6秒前
共享精神应助王三金采纳,获得10
8秒前
8秒前
9秒前
CipherSage应助pri采纳,获得10
9秒前
满天星完成签到,获得积分10
10秒前
打打应助ww4566采纳,获得10
10秒前
10秒前
imomoe完成签到,获得积分10
11秒前
11秒前
ava发布了新的文献求助20
12秒前
thchiang发布了新的文献求助10
13秒前
michael完成签到,获得积分10
15秒前
二行发布了新的文献求助10
16秒前
清脆慕山完成签到,获得积分10
16秒前
jane123完成签到,获得积分10
17秒前
17秒前
丘比特应助谦让的小姜采纳,获得10
17秒前
赘婿应助www采纳,获得10
18秒前
18秒前
18秒前
隐形曼青应助栗子鱼采纳,获得10
19秒前
公冶惊蛰完成签到,获得积分20
19秒前
username完成签到,获得积分10
20秒前
21秒前
21秒前
腼腆的馒头关注了科研通微信公众号
21秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137988
求助须知:如何正确求助?哪些是违规求助? 2788970
关于积分的说明 7789245
捐赠科研通 2445350
什么是DOI,文献DOI怎么找? 1300312
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046