鉴别器
Boosting(机器学习)
计算机科学
规范化(社会学)
生成语法
发电机(电路理论)
人工智能
对抗制
模式识别(心理学)
图像(数学)
特征(语言学)
可视化
计算机视觉
算法
探测器
电信
功率(物理)
语言学
物理
哲学
量子力学
社会学
人类学
作者
Han Zhang,Ian Goodfellow,Dimitris Metaxas,Augustus Odena
出处
期刊:Cornell University - arXiv
日期:2018-01-01
被引量:2276
标识
DOI:10.48550/arxiv.1805.08318
摘要
In this paper, we propose the Self-Attention Generative Adversarial Network (SAGAN) which allows attention-driven, long-range dependency modeling for image generation tasks. Traditional convolutional GANs generate high-resolution details as a function of only spatially local points in lower-resolution feature maps. In SAGAN, details can be generated using cues from all feature locations. Moreover, the discriminator can check that highly detailed features in distant portions of the image are consistent with each other. Furthermore, recent work has shown that generator conditioning affects GAN performance. Leveraging this insight, we apply spectral normalization to the GAN generator and find that this improves training dynamics. The proposed SAGAN achieves the state-of-the-art results, boosting the best published Inception score from 36.8 to 52.52 and reducing Frechet Inception distance from 27.62 to 18.65 on the challenging ImageNet dataset. Visualization of the attention layers shows that the generator leverages neighborhoods that correspond to object shapes rather than local regions of fixed shape.
科研通智能强力驱动
Strongly Powered by AbleSci AI