Development and External Validation of Nomograms To Predict Adverse Pathological Characteristics After Robotic Prostatectomy: Results of a Prospective, Multi-institutional, Nationwide series

列线图 医学 前列腺切除术 病态的 前瞻性队列研究 系列(地层学) 不利影响 外科 内科学 前列腺癌 癌症 生物 古生物学
作者
Lorenzo Tosco,Greet De Coster,Thierry Roumeguère,Wouter Everaerts,Thierry Quackels,Peter Dekuyper,Ben Van Cleynenbreugel,Nancy Van Damme,Elizabeth Van Eycken,Filip Ameye,Steven Joniau
出处
期刊:European Urology Oncology [Elsevier]
卷期号:1 (4): 338-345 被引量:11
标识
DOI:10.1016/j.euo.2018.04.008
摘要

The possibility of predicting pathologic features before surgery can support clinicians in selecting the best treatment strategy for their patients. We sought to develop and externally validate pretreatment nomograms for the prediction of pathological features from a prospective multicentre series of robotic-assisted laparoscopic prostatectomy (RALP) procedures.Between 2009 and 2016, data from 6823 patients undergoing RALP in 25 academic and community hospitals were prospectively collected by the Belgian Cancer Registry. Logistic regression models were applied to predict extraprostatic extension (EPE; pT3a,b-4), seminal vesicle invasion (SVI; pT3b), and high-grade locally advanced disease (HGLA; pT3b-4 and Gleason score [GS] 8-10) using the following preoperative covariates: prostate-specific antigen, clinical T stage, biopsy GS, and percentage of positive biopsy cores. Internal and external validation was performed.The stability of the model was assessed via tenfold cross-validation using 80% of the cohort. The nomograms were independently externally validated using the test cohort. The discriminative accuracy of the nomograms was quantified as the area under the receiver operating characteristic curve and graphically represented using calibration plots.The nomograms predicting EPE, SVI, HGLA showed discriminative accuracy of 77%, 82%, and 88%, respectively. Following external validation, the accuracy remained stable. The prediction models showed excellent calibration properties.We developed and externally validated multi-institutional nomograms to predict pathologic features after RALP. These nomograms can be implemented in the clinical setting or patient selection in clinical trials.We developed novel nomograms using nationwide data to predict postoperative pathologic features and lethal prostate cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
天空之城发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
小马甲应助欲扬先抑采纳,获得10
3秒前
4秒前
PetrichorF完成签到 ,获得积分10
4秒前
4秒前
ty完成签到 ,获得积分10
4秒前
大苏打发布了新的文献求助10
4秒前
小羊肖恩发布了新的文献求助10
5秒前
CipherSage应助酷酷的西装采纳,获得10
5秒前
爆米花应助WYN采纳,获得10
5秒前
Q_Q完成签到,获得积分10
6秒前
檀木居然完成签到 ,获得积分10
6秒前
林结衣完成签到,获得积分10
6秒前
6秒前
失眠的芷珍完成签到 ,获得积分10
6秒前
顾矜应助aka拉粑粑大王采纳,获得10
7秒前
今后应助嗯哼采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
乐观寻雪发布了新的文献求助10
7秒前
是多多呀完成签到 ,获得积分10
7秒前
小妍姐姐发布了新的文献求助10
7秒前
杨欢发布了新的文献求助10
8秒前
kong完成签到,获得积分10
8秒前
9秒前
zty568发布了新的文献求助10
9秒前
科研通AI6应助小布丁采纳,获得10
9秒前
心灵美的大地完成签到,获得积分10
9秒前
pigzhu完成签到,获得积分10
10秒前
10秒前
yingying完成签到,获得积分20
10秒前
11秒前
学术屎壳郎完成签到,获得积分10
11秒前
zzkkl发布了新的文献求助10
12秒前
科研通AI6应助pigzhu采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660897
求助须知:如何正确求助?哪些是违规求助? 4836059
关于积分的说明 15092345
捐赠科研通 4819501
什么是DOI,文献DOI怎么找? 2579320
邀请新用户注册赠送积分活动 1533794
关于科研通互助平台的介绍 1492586