Development and External Validation of Nomograms To Predict Adverse Pathological Characteristics After Robotic Prostatectomy: Results of a Prospective, Multi-institutional, Nationwide series

列线图 医学 前列腺切除术 病态的 前瞻性队列研究 系列(地层学) 不利影响 外科 内科学 前列腺癌 癌症 生物 古生物学
作者
Lorenzo Tosco,Greet De Coster,Thierry Roumeguère,Wouter Everaerts,Thierry Quackels,Peter Dekuyper,Ben Van Cleynenbreugel,Nancy Van Damme,Elizabeth Van Eycken,Filip Ameye,Steven Joniau
出处
期刊:European Urology Oncology [Elsevier]
卷期号:1 (4): 338-345 被引量:11
标识
DOI:10.1016/j.euo.2018.04.008
摘要

The possibility of predicting pathologic features before surgery can support clinicians in selecting the best treatment strategy for their patients. We sought to develop and externally validate pretreatment nomograms for the prediction of pathological features from a prospective multicentre series of robotic-assisted laparoscopic prostatectomy (RALP) procedures.Between 2009 and 2016, data from 6823 patients undergoing RALP in 25 academic and community hospitals were prospectively collected by the Belgian Cancer Registry. Logistic regression models were applied to predict extraprostatic extension (EPE; pT3a,b-4), seminal vesicle invasion (SVI; pT3b), and high-grade locally advanced disease (HGLA; pT3b-4 and Gleason score [GS] 8-10) using the following preoperative covariates: prostate-specific antigen, clinical T stage, biopsy GS, and percentage of positive biopsy cores. Internal and external validation was performed.The stability of the model was assessed via tenfold cross-validation using 80% of the cohort. The nomograms were independently externally validated using the test cohort. The discriminative accuracy of the nomograms was quantified as the area under the receiver operating characteristic curve and graphically represented using calibration plots.The nomograms predicting EPE, SVI, HGLA showed discriminative accuracy of 77%, 82%, and 88%, respectively. Following external validation, the accuracy remained stable. The prediction models showed excellent calibration properties.We developed and externally validated multi-institutional nomograms to predict pathologic features after RALP. These nomograms can be implemented in the clinical setting or patient selection in clinical trials.We developed novel nomograms using nationwide data to predict postoperative pathologic features and lethal prostate cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lili完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
勤劳的斑马完成签到,获得积分10
2秒前
2秒前
完美世界应助Windycityguy采纳,获得10
2秒前
深情安青应助starlx0813采纳,获得10
3秒前
3秒前
义气丹雪应助细腻听白采纳,获得100
3秒前
Re发布了新的文献求助10
3秒前
科研通AI6.1应助热情千风采纳,获得10
4秒前
雨柏完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
8秒前
orixero应助年轻就要气盛采纳,获得10
9秒前
violet完成签到,获得积分20
10秒前
充电宝应助健忘的雨安采纳,获得10
12秒前
dfggg发布了新的文献求助10
12秒前
饱满的问丝完成签到,获得积分10
13秒前
14秒前
大水完成签到 ,获得积分10
15秒前
15秒前
Akira完成签到,获得积分20
16秒前
隐形曼青应助是ok耶采纳,获得10
17秒前
18秒前
18秒前
11111发布了新的文献求助20
19秒前
大水发布了新的文献求助10
21秒前
21秒前
小蘑菇应助保持科研热情采纳,获得10
21秒前
所所应助蓦然采纳,获得10
22秒前
22秒前
爱科研的小蜗啊完成签到,获得积分10
23秒前
从容梦山发布了新的文献求助10
23秒前
23秒前
23秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737586
求助须知:如何正确求助?哪些是违规求助? 5373212
关于积分的说明 15335749
捐赠科研通 4880965
什么是DOI,文献DOI怎么找? 2623199
邀请新用户注册赠送积分活动 1572027
关于科研通互助平台的介绍 1528848