Development and External Validation of Nomograms To Predict Adverse Pathological Characteristics After Robotic Prostatectomy: Results of a Prospective, Multi-institutional, Nationwide series

列线图 医学 前列腺切除术 病态的 前瞻性队列研究 系列(地层学) 不利影响 外科 内科学 前列腺癌 癌症 生物 古生物学
作者
Lorenzo Tosco,Greet De Coster,Thierry Roumeguère,Wouter Everaerts,Thierry Quackels,Peter Dekuyper,Ben Van Cleynenbreugel,Nancy Van Damme,Elizabeth Van Eycken,Filip Ameye,Steven Joniau
出处
期刊:European Urology Oncology [Elsevier]
卷期号:1 (4): 338-345 被引量:11
标识
DOI:10.1016/j.euo.2018.04.008
摘要

The possibility of predicting pathologic features before surgery can support clinicians in selecting the best treatment strategy for their patients. We sought to develop and externally validate pretreatment nomograms for the prediction of pathological features from a prospective multicentre series of robotic-assisted laparoscopic prostatectomy (RALP) procedures.Between 2009 and 2016, data from 6823 patients undergoing RALP in 25 academic and community hospitals were prospectively collected by the Belgian Cancer Registry. Logistic regression models were applied to predict extraprostatic extension (EPE; pT3a,b-4), seminal vesicle invasion (SVI; pT3b), and high-grade locally advanced disease (HGLA; pT3b-4 and Gleason score [GS] 8-10) using the following preoperative covariates: prostate-specific antigen, clinical T stage, biopsy GS, and percentage of positive biopsy cores. Internal and external validation was performed.The stability of the model was assessed via tenfold cross-validation using 80% of the cohort. The nomograms were independently externally validated using the test cohort. The discriminative accuracy of the nomograms was quantified as the area under the receiver operating characteristic curve and graphically represented using calibration plots.The nomograms predicting EPE, SVI, HGLA showed discriminative accuracy of 77%, 82%, and 88%, respectively. Following external validation, the accuracy remained stable. The prediction models showed excellent calibration properties.We developed and externally validated multi-institutional nomograms to predict pathologic features after RALP. These nomograms can be implemented in the clinical setting or patient selection in clinical trials.We developed novel nomograms using nationwide data to predict postoperative pathologic features and lethal prostate cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
充电宝应助luo采纳,获得10
刚刚
帅气的小翟完成签到,获得积分10
2秒前
闪闪的乐蕊完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
1774181866发布了新的文献求助10
4秒前
wjy321发布了新的文献求助10
5秒前
李小聪完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
852应助研友_ndvWy8采纳,获得10
9秒前
11秒前
凡凡应助虚心的小兔子采纳,获得10
11秒前
FashionBoy应助欢乐通采纳,获得10
12秒前
12秒前
CodeCraft应助泥巴采纳,获得10
13秒前
恰恰恰发布了新的文献求助10
13秒前
13秒前
黄则已发布了新的文献求助10
14秒前
香蕉觅云应助sfliufighting采纳,获得10
15秒前
Liu完成签到 ,获得积分10
16秒前
17秒前
佛说一缘完成签到 ,获得积分10
18秒前
19秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
魁梧的听荷完成签到 ,获得积分10
21秒前
22秒前
帽子戏法发布了新的文献求助10
22秒前
zhuling发布了新的文献求助10
24秒前
24秒前
24秒前
聪明的老太完成签到,获得积分10
25秒前
25秒前
puhong zhang发布了新的文献求助10
26秒前
1774181866完成签到,获得积分10
26秒前
就爱炸元宵完成签到 ,获得积分10
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713458
求助须知:如何正确求助?哪些是违规求助? 5215299
关于积分的说明 15270846
捐赠科研通 4865190
什么是DOI,文献DOI怎么找? 2611932
邀请新用户注册赠送积分活动 1562095
关于科研通互助平台的介绍 1519329