Development and External Validation of Nomograms To Predict Adverse Pathological Characteristics After Robotic Prostatectomy: Results of a Prospective, Multi-institutional, Nationwide series

列线图 医学 前列腺切除术 病态的 前瞻性队列研究 系列(地层学) 不利影响 外科 内科学 前列腺癌 癌症 生物 古生物学
作者
Lorenzo Tosco,Greet De Coster,Thierry Roumeguère,Wouter Everaerts,Thierry Quackels,Peter Dekuyper,Ben Van Cleynenbreugel,Nancy Van Damme,Elizabeth Van Eycken,Filip Ameye,Steven Joniau
出处
期刊:European Urology Oncology [Elsevier]
卷期号:1 (4): 338-345 被引量:11
标识
DOI:10.1016/j.euo.2018.04.008
摘要

The possibility of predicting pathologic features before surgery can support clinicians in selecting the best treatment strategy for their patients. We sought to develop and externally validate pretreatment nomograms for the prediction of pathological features from a prospective multicentre series of robotic-assisted laparoscopic prostatectomy (RALP) procedures.Between 2009 and 2016, data from 6823 patients undergoing RALP in 25 academic and community hospitals were prospectively collected by the Belgian Cancer Registry. Logistic regression models were applied to predict extraprostatic extension (EPE; pT3a,b-4), seminal vesicle invasion (SVI; pT3b), and high-grade locally advanced disease (HGLA; pT3b-4 and Gleason score [GS] 8-10) using the following preoperative covariates: prostate-specific antigen, clinical T stage, biopsy GS, and percentage of positive biopsy cores. Internal and external validation was performed.The stability of the model was assessed via tenfold cross-validation using 80% of the cohort. The nomograms were independently externally validated using the test cohort. The discriminative accuracy of the nomograms was quantified as the area under the receiver operating characteristic curve and graphically represented using calibration plots.The nomograms predicting EPE, SVI, HGLA showed discriminative accuracy of 77%, 82%, and 88%, respectively. Following external validation, the accuracy remained stable. The prediction models showed excellent calibration properties.We developed and externally validated multi-institutional nomograms to predict pathologic features after RALP. These nomograms can be implemented in the clinical setting or patient selection in clinical trials.We developed novel nomograms using nationwide data to predict postoperative pathologic features and lethal prostate cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肖志勇发布了新的文献求助10
1秒前
盏盏应助tianqiang采纳,获得10
2秒前
2秒前
Orange应助包容的善斓采纳,获得10
3秒前
聪慧代芹完成签到,获得积分20
3秒前
if发布了新的文献求助10
3秒前
朴西西发布了新的文献求助10
3秒前
Cheng完成签到 ,获得积分10
4秒前
Hanluchen完成签到,获得积分10
4秒前
科研通AI6应助灵儿采纳,获得10
4秒前
5秒前
科研迪发布了新的文献求助10
5秒前
6秒前
wzy发布了新的文献求助10
6秒前
不安鱼完成签到,获得积分10
7秒前
7秒前
庄庄发布了新的文献求助10
7秒前
7秒前
SciGPT应助zain采纳,获得10
7秒前
8秒前
CodeCraft应助常丽芳采纳,获得10
8秒前
852应助无情的宛儿采纳,获得10
8秒前
8秒前
Quinee发布了新的文献求助10
9秒前
无耻之徒发布了新的文献求助10
9秒前
MR_芝欧发布了新的文献求助10
10秒前
10秒前
12秒前
12秒前
小杨发布了新的文献求助10
12秒前
Yang发布了新的文献求助20
13秒前
13秒前
852应助Danboard采纳,获得10
13秒前
13秒前
13秒前
无花果应助丫丫采纳,获得10
14秒前
14秒前
忐忑的故事完成签到,获得积分10
14秒前
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468557
求助须知:如何正确求助?哪些是违规求助? 4571954
关于积分的说明 14332897
捐赠科研通 4498650
什么是DOI,文献DOI怎么找? 2464664
邀请新用户注册赠送积分活动 1453302
关于科研通互助平台的介绍 1427914