Development and External Validation of Nomograms To Predict Adverse Pathological Characteristics After Robotic Prostatectomy: Results of a Prospective, Multi-institutional, Nationwide series

列线图 医学 前列腺切除术 病态的 前瞻性队列研究 系列(地层学) 不利影响 外科 内科学 前列腺癌 癌症 生物 古生物学
作者
Lorenzo Tosco,Greet De Coster,Thierry Roumeguère,Wouter Everaerts,Thierry Quackels,Peter Dekuyper,Ben Van Cleynenbreugel,Nancy Van Damme,Elizabeth Van Eycken,Filip Ameye,Steven Joniau
出处
期刊:European Urology Oncology [Elsevier]
卷期号:1 (4): 338-345 被引量:11
标识
DOI:10.1016/j.euo.2018.04.008
摘要

The possibility of predicting pathologic features before surgery can support clinicians in selecting the best treatment strategy for their patients. We sought to develop and externally validate pretreatment nomograms for the prediction of pathological features from a prospective multicentre series of robotic-assisted laparoscopic prostatectomy (RALP) procedures.Between 2009 and 2016, data from 6823 patients undergoing RALP in 25 academic and community hospitals were prospectively collected by the Belgian Cancer Registry. Logistic regression models were applied to predict extraprostatic extension (EPE; pT3a,b-4), seminal vesicle invasion (SVI; pT3b), and high-grade locally advanced disease (HGLA; pT3b-4 and Gleason score [GS] 8-10) using the following preoperative covariates: prostate-specific antigen, clinical T stage, biopsy GS, and percentage of positive biopsy cores. Internal and external validation was performed.The stability of the model was assessed via tenfold cross-validation using 80% of the cohort. The nomograms were independently externally validated using the test cohort. The discriminative accuracy of the nomograms was quantified as the area under the receiver operating characteristic curve and graphically represented using calibration plots.The nomograms predicting EPE, SVI, HGLA showed discriminative accuracy of 77%, 82%, and 88%, respectively. Following external validation, the accuracy remained stable. The prediction models showed excellent calibration properties.We developed and externally validated multi-institutional nomograms to predict pathologic features after RALP. These nomograms can be implemented in the clinical setting or patient selection in clinical trials.We developed novel nomograms using nationwide data to predict postoperative pathologic features and lethal prostate cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyy发布了新的文献求助20
刚刚
刚刚
qxm发布了新的文献求助10
1秒前
3秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
9秒前
left_right发布了新的文献求助10
9秒前
9秒前
青年才俊发布了新的文献求助10
10秒前
澡雪完成签到,获得积分10
10秒前
嘎嘎嘎完成签到,获得积分10
12秒前
Ania99发布了新的文献求助10
13秒前
脑洞疼应助yy采纳,获得10
13秒前
研友_VZG7GZ应助qxm采纳,获得10
13秒前
YiZT发布了新的文献求助10
14秒前
15秒前
left_right完成签到,获得积分10
17秒前
爱听歌的大地完成签到 ,获得积分10
20秒前
20秒前
xhh发布了新的文献求助10
20秒前
幸福的含雁完成签到,获得积分10
22秒前
波谷完成签到,获得积分10
23秒前
23秒前
滟滟完成签到,获得积分10
23秒前
刘荣圣发布了新的文献求助10
23秒前
Deena发布了新的文献求助10
23秒前
chen完成签到,获得积分10
25秒前
yznfly应助老仙翁采纳,获得200
25秒前
yy发布了新的文献求助10
26秒前
26秒前
Elk完成签到,获得积分10
26秒前
huanhuan发布了新的文献求助10
27秒前
积极雨雪完成签到,获得积分10
28秒前
zzznznnn发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
30秒前
机灵静槐发布了新的文献求助30
30秒前
yy完成签到,获得积分10
32秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604088
求助须知:如何正确求助?哪些是违规求助? 4688919
关于积分的说明 14857074
捐赠科研通 4696569
什么是DOI,文献DOI怎么找? 2541150
邀请新用户注册赠送积分活动 1507314
关于科研通互助平台的介绍 1471851