Detection of algorithmically generated domain names used by botnets

计算机科学 人工智能 僵尸网络 机器学习 深度学习 特征工程 恶意软件 随机森林 分类器(UML) 水准点(测量) 人工神经网络 学习分类器系统 特征提取 互联网 操作系统 大地测量学 万维网 地理
作者
Jan Spooren,Davy Preuveneers,Lieven Desmet,Peter H. Janssen,Wouter Joosen
标识
DOI:10.1145/3297280.3297467
摘要

Malware typically uses Domain Generation Algorithms (DGAs) as a mechanism to contact their Command and Control server. In recent years, different approaches to automatically detect generated domain names have been proposed, based on machine learning. The first problem that we address is the difficulty to systematically compare these DGA detection algorithms due to the lack of an independent benchmark. The second problem that we investigate is the difficulty for an adversary to circumvent these classifiers when the machine learning models backing these DGA-detectors are known. In this paper we compare two different approaches on the same set of DGAs: classical machine learning using manually engineered features and a 'deep learning' recurrent neural network. We show that the deep learning approach performs consistently better on all of the tested DGAs, with an average classification accuracy of 98.7% versus 93.8% for the manually engineered features. We also show that one of the dangers of manual feature engineering is that DGAs can adapt their strategy, based on knowledge of the features used to detect them. To demonstrate this, we use the knowledge of the used feature set to design a new DGA which makes the random forest classifier powerless with a classification accuracy of 59.9%. The deep learning classifier is also (albeit less) affected, reducing its accuracy to 85.5%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助fff采纳,获得10
1秒前
wyy完成签到,获得积分20
2秒前
3秒前
知识学爆完成签到,获得积分10
3秒前
5秒前
hxm完成签到,获得积分10
7秒前
7秒前
慕雪涵发布了新的文献求助10
10秒前
tkx是流氓兔完成签到,获得积分10
10秒前
11秒前
诺澜啊发布了新的文献求助10
12秒前
bean完成签到,获得积分10
14秒前
悦耳的柠檬完成签到,获得积分10
14秒前
14秒前
科研通AI2S应助酷炫翠桃采纳,获得10
14秒前
慕雪涵完成签到,获得积分10
17秒前
英俊的铭应助独特的尔风采纳,获得10
17秒前
T012发布了新的文献求助10
17秒前
17秒前
luna完成签到 ,获得积分10
19秒前
大模型应助bean采纳,获得10
19秒前
刻苦的小虾米完成签到,获得积分10
20秒前
Hou发布了新的文献求助20
20秒前
CipherSage应助小东西采纳,获得10
22秒前
打打应助柯不正采纳,获得10
22秒前
不懈奋进应助心台采纳,获得30
22秒前
深情安青应助fenghp采纳,获得10
22秒前
22秒前
SciGPT应助hklong采纳,获得10
23秒前
24秒前
24秒前
27秒前
vghvvjg发布了新的文献求助10
28秒前
28秒前
彩色德天完成签到 ,获得积分10
28秒前
30秒前
30秒前
xx完成签到 ,获得积分10
31秒前
香蕉觅云应助昵称采纳,获得10
32秒前
一包辣条发布了新的文献求助10
33秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206745
求助须知:如何正确求助?哪些是违规求助? 2856198
关于积分的说明 8102939
捐赠科研通 2521287
什么是DOI,文献DOI怎么找? 1354335
科研通“疑难数据库(出版商)”最低求助积分说明 642012
邀请新用户注册赠送积分活动 613207