数学
趋同(经济学)
梯度下降
歧管(流体力学)
算法
公制(单位)
图像分割
水平集(数据结构)
黎曼流形
局部二进制模式
二进制数
人工智能
应用数学
计算机科学
分割
直方图
图像(数学)
数学分析
人工神经网络
算术
经济
工程类
机械工程
经济增长
运营管理
作者
Yifan Song,Guohua Peng
摘要
This paper explores a Riemannian steepest method for fast converging local binary fitting model. The proposed method takes advantage of intensity information in local regions, which solves the intensity inhomogeneous images with satisfactory results. Furthermore, the Riemannian steepest descent method can be employed to local binary fitting model from exponential family and achieves convergence fast. The main contribution of this paper is that presents a general closed-form expression for the manifold’s Riemannian metric tensor of local binary fitting model, which makes the computation of Riemannian gradient flow possible. In addition, to ensure the accuracy of the segmentation results, we regularize the level set function by Gaussian smooth operator. Experimental results for synthetic and real-life images show satisfactory performances of proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI