卡尔曼滤波器
稳健性(进化)
电池(电)
MATLAB语言
扩展卡尔曼滤波器
在线模型
计算机科学
锂离子电池
荷电状态
控制理论(社会学)
等效电路
算法
工程类
电压
数学
电气工程
人工智能
功率(物理)
统计
物理
操作系统
化学
基因
控制(管理)
量子力学
生物化学
作者
Hongyu Long,Cheng-Yong Zhu,Bibin Huang,Changhao Piao,Sun Ya-qing
标识
DOI:10.1007/s42835-019-00179-w
摘要
The purpose of this paper is to discuss how to solve the problem of on-line identification of model parameters of Li-ion battery and on-line estimation of SOC. Based on the matlab/simulink platform, a first-order RC equivalent circuit model of the battery is built, and a joint estimation algorithm of the model parameters and SOC of the lithium ion battery is designed based on the dynamic model, which is compared with the single adaptive Kalman filter algorithm (AEKF). The simulation results show that the proposed joint estimation algorithm can make effective online estimation and update of the battery model parameters and SOC. The average estimation error of SOC is less than 2.8%, the estimation accuracy is higher than that of adaptive Kalman filter, and its robustness level is relatively high.
科研通智能强力驱动
Strongly Powered by AbleSci AI