已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Stable Prediction across Unknown Environments

计算机科学 人工智能 机器学习 分类器(UML) 特征选择 维数之咒 概率逻辑 降维 数据挖掘
作者
Kun Kuang,Peng Cui,Susan Athey,Ruoxuan Xiong,Bo Li
出处
期刊:Cornell University - arXiv 被引量:97
标识
DOI:10.1145/3219819.3220082
摘要

In many important machine learning applications, the training distribution used to learn a probabilistic classifier differs from the testing distribution on which the classifier will be used to make predictions. Traditional methods correct the distribution shift by reweighting the training data with the ratio of the density between test and training data. In many applications training takes place without prior knowledge of the testing distribution on which the algorithm will be applied in the future. Recently, methods have been proposed to address the shift by learning causal structure, but those methods rely on the diversity of multiple training data to a good performance, and have complexity limitations in high dimensions. In this paper, we propose a novel Deep Global Balancing Regression (DGBR) algorithm to jointly optimize a deep auto-encoder model for feature selection and a global balancing model for stable prediction across unknown environments. The global balancing model constructs balancing weights that facilitate estimating of partial effects of features (holding fixed all other features), a problem that is challenging in high dimensions, and thus helps to identify stable, causal relationships between features and outcomes. The deep auto-encoder model is designed to reduce the dimensionality of the feature space, thus making global balancing easier. We show, both theoretically and with empirical experiments, that our algorithm can make stable predictions across unknown environments. Our experiments on both synthetic and real world datasets demonstrate that our DGBR algorithm outperforms the state-of-the-art methods for stable prediction across unknown environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肥波发布了新的文献求助10
1秒前
肥波发布了新的文献求助10
1秒前
肥波发布了新的文献求助10
1秒前
mzf发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
X悦发布了新的文献求助10
3秒前
思有发布了新的文献求助10
4秒前
zkx完成签到,获得积分20
5秒前
YH应助mzf采纳,获得10
7秒前
9秒前
yydragen应助个性紫采纳,获得50
9秒前
汉堡包应助姜饼采纳,获得10
12秒前
14秒前
沉默访冬完成签到,获得积分10
16秒前
B站萧亚轩发布了新的文献求助10
19秒前
Auoroa完成签到,获得积分10
23秒前
Y20完成签到,获得积分10
24秒前
25秒前
27秒前
天天快乐应助柔弱的千秋采纳,获得10
29秒前
慕青应助hx采纳,获得10
30秒前
逝水无痕发布了新的文献求助10
30秒前
年轻访彤发布了新的文献求助10
32秒前
Superg完成签到,获得积分10
32秒前
33秒前
B站萧亚轩发布了新的文献求助10
34秒前
summer木完成签到,获得积分20
36秒前
整齐星月发布了新的文献求助10
38秒前
38秒前
司马绮山发布了新的文献求助10
38秒前
39秒前
40秒前
40秒前
yydragen应助小狗采纳,获得30
40秒前
年轻访彤完成签到,获得积分10
41秒前
小木木完成签到,获得积分10
41秒前
41秒前
42秒前
42秒前
橄榄绿发布了新的文献求助10
43秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959835
求助须知:如何正确求助?哪些是违规求助? 3506093
关于积分的说明 11127809
捐赠科研通 3238043
什么是DOI,文献DOI怎么找? 1789445
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021