已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Stable Prediction across Unknown Environments

计算机科学 人工智能 机器学习 分类器(UML) 特征选择 维数之咒 概率逻辑 降维 数据挖掘
作者
Kun Kuang,Peng Cui,Susan Athey,Ruoxuan Xiong,Bo Li
出处
期刊:Cornell University - arXiv 被引量:97
标识
DOI:10.1145/3219819.3220082
摘要

In many important machine learning applications, the training distribution used to learn a probabilistic classifier differs from the testing distribution on which the classifier will be used to make predictions. Traditional methods correct the distribution shift by reweighting the training data with the ratio of the density between test and training data. In many applications training takes place without prior knowledge of the testing distribution on which the algorithm will be applied in the future. Recently, methods have been proposed to address the shift by learning causal structure, but those methods rely on the diversity of multiple training data to a good performance, and have complexity limitations in high dimensions. In this paper, we propose a novel Deep Global Balancing Regression (DGBR) algorithm to jointly optimize a deep auto-encoder model for feature selection and a global balancing model for stable prediction across unknown environments. The global balancing model constructs balancing weights that facilitate estimating of partial effects of features (holding fixed all other features), a problem that is challenging in high dimensions, and thus helps to identify stable, causal relationships between features and outcomes. The deep auto-encoder model is designed to reduce the dimensionality of the feature space, thus making global balancing easier. We show, both theoretically and with empirical experiments, that our algorithm can make stable predictions across unknown environments. Our experiments on both synthetic and real world datasets demonstrate that our DGBR algorithm outperforms the state-of-the-art methods for stable prediction across unknown environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子车茗应助清爽老九采纳,获得20
1秒前
1秒前
1秒前
hanatae完成签到,获得积分10
2秒前
3秒前
liam发布了新的文献求助10
4秒前
MMM发布了新的文献求助10
4秒前
尼克11完成签到 ,获得积分10
5秒前
61forsci发布了新的文献求助10
5秒前
5秒前
丰知然举报zyy求助涉嫌违规
9秒前
10秒前
11秒前
13秒前
Vivianne发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
16秒前
acceleactor发布了新的文献求助10
16秒前
asdl完成签到,获得积分10
17秒前
文化人发布了新的文献求助10
17秒前
18秒前
gb发布了新的文献求助10
21秒前
桐桐应助小凯采纳,获得10
21秒前
22秒前
23秒前
24秒前
24秒前
24秒前
waleedo2020完成签到,获得积分10
25秒前
Asteria关注了科研通微信公众号
25秒前
FJJ完成签到,获得积分20
26秒前
富贵儿完成签到 ,获得积分10
28秒前
29秒前
boluo666发布了新的文献求助10
29秒前
29秒前
隐形曼青应助去伪存真采纳,获得10
29秒前
zzz发布了新的文献求助10
29秒前
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310848
求助须知:如何正确求助?哪些是违规求助? 2943666
关于积分的说明 8515977
捐赠科研通 2619022
什么是DOI,文献DOI怎么找? 1431761
科研通“疑难数据库(出版商)”最低求助积分说明 664472
邀请新用户注册赠送积分活动 649732