Stable Prediction across Unknown Environments

计算机科学 人工智能 机器学习 分类器(UML) 特征选择 维数之咒 概率逻辑 降维 数据挖掘
作者
Kun Kuang,Peng Cui,Susan Athey,Ruoxuan Xiong,Bo Li
出处
期刊:Cornell University - arXiv 被引量:97
标识
DOI:10.1145/3219819.3220082
摘要

In many important machine learning applications, the training distribution used to learn a probabilistic classifier differs from the testing distribution on which the classifier will be used to make predictions. Traditional methods correct the distribution shift by reweighting the training data with the ratio of the density between test and training data. In many applications training takes place without prior knowledge of the testing distribution on which the algorithm will be applied in the future. Recently, methods have been proposed to address the shift by learning causal structure, but those methods rely on the diversity of multiple training data to a good performance, and have complexity limitations in high dimensions. In this paper, we propose a novel Deep Global Balancing Regression (DGBR) algorithm to jointly optimize a deep auto-encoder model for feature selection and a global balancing model for stable prediction across unknown environments. The global balancing model constructs balancing weights that facilitate estimating of partial effects of features (holding fixed all other features), a problem that is challenging in high dimensions, and thus helps to identify stable, causal relationships between features and outcomes. The deep auto-encoder model is designed to reduce the dimensionality of the feature space, thus making global balancing easier. We show, both theoretically and with empirical experiments, that our algorithm can make stable predictions across unknown environments. Our experiments on both synthetic and real world datasets demonstrate that our DGBR algorithm outperforms the state-of-the-art methods for stable prediction across unknown environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大湖玩家完成签到,获得积分10
1秒前
1秒前
hj完成签到,获得积分10
1秒前
1秒前
酷波er应助Time采纳,获得10
2秒前
nora应助跳跃的翼采纳,获得20
3秒前
完美世界应助Zxc采纳,获得10
3秒前
王哈哈完成签到,获得积分10
3秒前
田様应助可靠的紫雪采纳,获得10
4秒前
天明发布了新的文献求助10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
加缪应助科研通管家采纳,获得100
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得30
5秒前
浮游应助科研通管家采纳,获得10
5秒前
laber应助科研通管家采纳,获得50
5秒前
6秒前
Akim应助科研通管家采纳,获得10
6秒前
zhaojiantgu发布了新的文献求助10
6秒前
加缪应助科研通管家采纳,获得100
6秒前
今后应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得150
6秒前
大模型应助科研通管家采纳,获得10
6秒前
aa应助科研通管家采纳,获得30
6秒前
6秒前
6秒前
6秒前
7秒前
佟杰发布了新的文献求助20
7秒前
量子星尘发布了新的文献求助150
8秒前
LIUUU完成签到,获得积分10
9秒前
9秒前
xzs完成签到,获得积分10
9秒前
9秒前
娃娃哈发布了新的文献求助10
10秒前
在水一方应助ningoz采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070231
求助须知:如何正确求助?哪些是违规求助? 4291424
关于积分的说明 13370277
捐赠科研通 4111739
什么是DOI,文献DOI怎么找? 2251660
邀请新用户注册赠送积分活动 1256787
关于科研通互助平台的介绍 1189405