材料科学
电化学
超级电容器
纳米片
复合数
水热合成
热液循环
形态学(生物学)
电容
电流密度
电极
分析化学(期刊)
纳米技术
化学工程
复合材料
化学
物理化学
物理
工程类
量子力学
生物
遗传学
色谱法
作者
A. Juliet Christina Mary,A. Chandra Bose
标识
DOI:10.1002/slct.201901915
摘要
Abstract Different nanostructured/composite materials are considered as a promising electrode material which enhances the electrochemical activity of the individual substances. V 2 O 5 /Mn 3 O 4 composite material is synthesized using hydrothermal method at different reaction time ranging from 12 h to 24 h. Obviously, by varying the reaction time, the morphology of composite changes from individual flakes to agglomerated flakes. The change in surface morphology of the material is observed from the SEM images. Electrochemical performance of V 2 O 5 , Mn 3 O 4 , V 2 O 5 /Mn 3 O 4 ‐1 , V 2 O 5 /Mn 3 O 4 ‐2 V 2 O 5 /Mn 3 O 4 ‐3 , V 2 O 5 /Mn 3 O 4 ‐4 and rGO is studied using cyclic voltammetric, charge/discharge, and electrochemical impedance spectroscopic studies. At a current density of 5 A g −1 , V 2 O 5 , Mn 3 O 4 , V 2 O 5 /Mn 3 O 4 ‐3 , and rGO nanosheet exhibit the maximum specific capacitance of 441, 190, 1008 and 464 F g −1 respectively. Moreover, the asymmetric supercapacitor device is constructed using V 2 O 5 /Mn 3 O 4 ‐3 and rGO nanomaterials. At 2 A g −1 , the asymmetric V 2 O 5 /Mn 3 O 4 ‐3 and rGO device obtains the highest energy density of 44.9 W h kg −1 and the corresponding power density is 1.76 kW kg −1 .
科研通智能强力驱动
Strongly Powered by AbleSci AI