摩擦电效应
材料科学
易燃液体
阻燃剂
消防
气凝胶
纳米发生器
纳米技术
复合材料
废物管理
工程类
压电
有机化学
化学
作者
Abdelsalam Ahmed,Maher F. El‐Kady,Islam Hassan,Ayman Negm,Amir Masoud Pourrahimi,Mit Muni,P. Ravi Selvaganapathy,Richard B. Kaner
出处
期刊:Nano Energy
[Elsevier]
日期:2019-02-12
卷期号:59: 336-345
被引量:70
标识
DOI:10.1016/j.nanoen.2019.02.026
摘要
The development of highly sensitive sensors and power generators that could function efficiently in extreme temperatures and contact with fire can be lifesaving but challenging to accomplish. Herein, we report, for the first time, a fire-retardant and self-extinguishing triboelectric nanogenerator (FRTENG), which can be utilized as a motion sensor and/or power generator in occupations such as oil drilling, firefighting or working in extreme temperature environments with flammable and combustible materials. The device takes advantage of the excellent thermal properties of carbon derived from resorcinol-formaldehyde aerogel whose electrical, mechanical and triboelectric properties have been improved via the introduction of Polyacrylonitrile nanofibers and graphene oxide nanosheets. This FRTENG is not flammable even after 90 s of trying, whereas conventional triboelectric materials were entirely consumed by fire under the same conditions. The developed device shows exceptional charge transfer characteristics, leading to a potential difference up to 80 V and a current density up to 25 µA/m2. When integrated into firefighter's shoes, the FRTENG is able to discern the movements of a firefighter in hazardous situations, while providing the high thermal stability missing in conventional TENGs. The fire-retardant and self-extinguishing characteristics offered by the FRTENG makes it a path-breaking device for lifesaving wearable applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI