已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

In silico prediction of chemical reproductive toxicity using machine learning

生殖毒性 毒性 生物信息学 适用范围 发育毒性 计算机科学 机器学习 化学毒性 生物 毒理 数量结构-活动关系 人工智能 医学 遗传学 基因 内科学 怀孕 妊娠期
作者
Changsheng Jiang,Hongbin Yang,Peiwen Di,Weihua Li,Yun Tang,Guixia Liu
出处
期刊:Journal of Applied Toxicology [Wiley]
卷期号:39 (6): 844-854 被引量:53
标识
DOI:10.1002/jat.3772
摘要

Abstract Reproductive toxicity is an important regulatory endpoint in health hazard assessment. Because the in vivo tests are expensive, time consuming and require a large number of animals, which must be killed, in silico approaches as the alternative strategies have been developed to assess the potential reproductive toxicity (reproductive toxicity) of chemicals. Some prediction models for reproductive toxicity have been developed, but most of them were built only based on one single endpoint such as embryo teratogenicity; therefore, these models may not provide reliable predictions for toxic chemicals with other endpoints, such as sperm reduction or gonadal dysgenesis. Here, a total of 1823 chemicals for reproductive toxicity characterized by multiple endpoints were used to develop structure‐activity relationship models by six machine‐learning approaches with nine molecular fingerprints. Among the models, MACCSFP‐SVM model has the best performance for the external validation set (area under the curve = 0.900, classification accuracy = 0.836). The applicability domain was analyzed, and a rational boundary was found to distinguish inaccurate predictions and accurate predictions. Moreover, several structural alerts for characterizing reproductive toxicity were identified using the information gain combining substructure frequency analysis. Our results would be helpful for the prediction of the reproductive toxicity of chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助xxttt采纳,获得10
1秒前
1秒前
bluee发布了新的文献求助10
2秒前
CC发布了新的文献求助10
4秒前
yangyajie发布了新的文献求助30
4秒前
小巧尔蓝发布了新的文献求助20
4秒前
张三李四王麻子完成签到 ,获得积分10
5秒前
王博士发布了新的文献求助80
7秒前
NexusExplorer应助曾经冰露采纳,获得10
7秒前
HaHa完成签到,获得积分10
7秒前
7秒前
igf完成签到,获得积分10
8秒前
9秒前
NexusExplorer应助yyc采纳,获得10
9秒前
stone完成签到 ,获得积分20
9秒前
无糖美式发布了新的文献求助10
11秒前
11秒前
0000完成签到 ,获得积分10
12秒前
所所应助阿狸贱贱采纳,获得10
12秒前
lsybf完成签到,获得积分10
13秒前
ina完成签到,获得积分10
14秒前
小羊发布了新的文献求助10
15秒前
15秒前
111122223333发布了新的文献求助10
15秒前
Ali990323发布了新的文献求助10
18秒前
18秒前
20秒前
21秒前
脑洞疼应助不器君采纳,获得10
22秒前
22秒前
巫马尔槐发布了新的文献求助10
25秒前
26秒前
27秒前
bluee完成签到,获得积分10
27秒前
28秒前
30秒前
徐逊发布了新的文献求助10
30秒前
sci发布了新的文献求助10
31秒前
msk完成签到,获得积分10
31秒前
万能图书馆应助小萌兽采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252840
求助须知:如何正确求助?哪些是违规求助? 4416384
关于积分的说明 13749582
捐赠科研通 4288491
什么是DOI,文献DOI怎么找? 2352947
邀请新用户注册赠送积分活动 1349756
关于科研通互助平台的介绍 1309339