In silico prediction of chemical reproductive toxicity using machine learning

生殖毒性 毒性 生物信息学 适用范围 发育毒性 计算机科学 机器学习 化学毒性 生物 毒理 数量结构-活动关系 计算生物学 医学 遗传学 基因 内科学 怀孕 妊娠期
作者
Changsheng Jiang,Hongbin Yang,Peiwen Di,Weihua Li,Yun Tang,Guixia Liu
出处
期刊:Journal of Applied Toxicology [Wiley]
卷期号:39 (6): 844-854 被引量:43
标识
DOI:10.1002/jat.3772
摘要

Abstract Reproductive toxicity is an important regulatory endpoint in health hazard assessment. Because the in vivo tests are expensive, time consuming and require a large number of animals, which must be killed, in silico approaches as the alternative strategies have been developed to assess the potential reproductive toxicity (reproductive toxicity) of chemicals. Some prediction models for reproductive toxicity have been developed, but most of them were built only based on one single endpoint such as embryo teratogenicity; therefore, these models may not provide reliable predictions for toxic chemicals with other endpoints, such as sperm reduction or gonadal dysgenesis. Here, a total of 1823 chemicals for reproductive toxicity characterized by multiple endpoints were used to develop structure‐activity relationship models by six machine‐learning approaches with nine molecular fingerprints. Among the models, MACCSFP‐SVM model has the best performance for the external validation set (area under the curve = 0.900, classification accuracy = 0.836). The applicability domain was analyzed, and a rational boundary was found to distinguish inaccurate predictions and accurate predictions. Moreover, several structural alerts for characterizing reproductive toxicity were identified using the information gain combining substructure frequency analysis. Our results would be helpful for the prediction of the reproductive toxicity of chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
肥猫完成签到,获得积分10
2秒前
Aixia发布了新的文献求助10
3秒前
小唐尼完成签到,获得积分10
3秒前
7秒前
皮老师发布了新的文献求助10
7秒前
幸福大白完成签到,获得积分10
8秒前
9秒前
Cml发布了新的文献求助30
10秒前
河大谢广坤完成签到,获得积分10
10秒前
11秒前
12秒前
111111发布了新的文献求助10
12秒前
15秒前
陌予发布了新的文献求助10
16秒前
17秒前
缓慢的开山完成签到 ,获得积分10
19秒前
20秒前
量子星尘发布了新的文献求助10
22秒前
ash完成签到,获得积分20
24秒前
24秒前
25秒前
英俊的铭应助月月采纳,获得10
28秒前
ash发布了新的文献求助100
28秒前
周也发布了新的文献求助10
28秒前
文献菜鸟完成签到 ,获得积分10
29秒前
淅淅12345完成签到,获得积分20
29秒前
小二郎应助zhan采纳,获得10
29秒前
32秒前
32秒前
osmanthus完成签到,获得积分10
32秒前
feng1235完成签到,获得积分10
34秒前
拓木幸子完成签到,获得积分10
35秒前
热心市民小红花应助陈昊采纳,获得10
35秒前
36秒前
lcr发布了新的文献求助10
37秒前
Ginkgo完成签到 ,获得积分10
38秒前
安静海露完成签到,获得积分10
38秒前
39秒前
zhan完成签到,获得积分10
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989069
求助须知:如何正确求助?哪些是违规求助? 3531351
关于积分的说明 11253589
捐赠科研通 3269939
什么是DOI,文献DOI怎么找? 1804851
邀请新用户注册赠送积分活动 882074
科研通“疑难数据库(出版商)”最低求助积分说明 809073