In silico prediction of chemical reproductive toxicity using machine learning

生殖毒性 毒性 生物信息学 适用范围 发育毒性 计算机科学 机器学习 化学毒性 生物 毒理 数量结构-活动关系 计算生物学 医学 遗传学 基因 内科学 怀孕 妊娠期
作者
Changsheng Jiang,Hongbin Yang,Peiwen Di,Weihua Li,Yun Tang,Guixia Liu
出处
期刊:Journal of Applied Toxicology [Wiley]
卷期号:39 (6): 844-854 被引量:43
标识
DOI:10.1002/jat.3772
摘要

Abstract Reproductive toxicity is an important regulatory endpoint in health hazard assessment. Because the in vivo tests are expensive, time consuming and require a large number of animals, which must be killed, in silico approaches as the alternative strategies have been developed to assess the potential reproductive toxicity (reproductive toxicity) of chemicals. Some prediction models for reproductive toxicity have been developed, but most of them were built only based on one single endpoint such as embryo teratogenicity; therefore, these models may not provide reliable predictions for toxic chemicals with other endpoints, such as sperm reduction or gonadal dysgenesis. Here, a total of 1823 chemicals for reproductive toxicity characterized by multiple endpoints were used to develop structure‐activity relationship models by six machine‐learning approaches with nine molecular fingerprints. Among the models, MACCSFP‐SVM model has the best performance for the external validation set (area under the curve = 0.900, classification accuracy = 0.836). The applicability domain was analyzed, and a rational boundary was found to distinguish inaccurate predictions and accurate predictions. Moreover, several structural alerts for characterizing reproductive toxicity were identified using the information gain combining substructure frequency analysis. Our results would be helpful for the prediction of the reproductive toxicity of chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaowannamoney完成签到,获得积分10
刚刚
刚刚
爆爆虎完成签到 ,获得积分10
1秒前
1秒前
ShowMaker应助山海不说话采纳,获得30
2秒前
英俊的铭应助岁月静好采纳,获得10
3秒前
cxdhxu完成签到 ,获得积分10
3秒前
难摧发布了新的文献求助10
3秒前
wgglegg完成签到,获得积分10
3秒前
健忘天问发布了新的文献求助10
5秒前
nn完成签到 ,获得积分10
5秒前
ccm发布了新的文献求助10
6秒前
Binbin发布了新的文献求助10
7秒前
大模型应助活泼雁兰采纳,获得10
7秒前
liuqiuchina完成签到,获得积分10
8秒前
云氲完成签到 ,获得积分10
8秒前
lily完成签到 ,获得积分10
9秒前
乐园完成签到,获得积分10
9秒前
cyw完成签到,获得积分20
11秒前
11秒前
呵呵完成签到,获得积分10
13秒前
大模型应助科研通管家采纳,获得10
14秒前
cyw发布了新的文献求助10
14秒前
Singularity应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
Singularity应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
15秒前
大个应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
Singularity应助科研通管家采纳,获得10
15秒前
15秒前
科目三应助英俊的鱼采纳,获得10
15秒前
在路上发布了新的文献求助10
15秒前
18秒前
科目三应助雨洋采纳,获得10
18秒前
18秒前
asdfgh完成签到,获得积分10
21秒前
路上未到发布了新的文献求助10
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146297
求助须知:如何正确求助?哪些是违规求助? 2797687
关于积分的说明 7825144
捐赠科研通 2454059
什么是DOI,文献DOI怎么找? 1305990
科研通“疑难数据库(出版商)”最低求助积分说明 627630
版权声明 601503