特征选择
特征(语言学)
最大化
人工智能
计算机科学
独立性(概率论)
模式识别(心理学)
选择(遗传算法)
贪婪算法
机器学习
数据挖掘
数学
算法
数学优化
统计
哲学
语言学
作者
Le Song,Alex Smola,Arthur Gretton,Justin Bedő,Karsten Borgwardt
摘要
We introduce a framework for feature selection based on dependence maximization between the selected features and the labels of an estimation problem, using the Hilbert-Schmidt Independence Criterion. The key idea is that good features should be highly dependent on the labels. Our approach leads to a greedy procedure for feature selection. We show that a number of existing feature selectors are special cases of this framework. Experiments on both artificial and real-world data show that our feature selector works well in practice.
科研通智能强力驱动
Strongly Powered by AbleSci AI