核主成分分析
故障检测与隔离
主成分分析
计算机科学
核(代数)
数据挖掘
人工智能
扩展(谓词逻辑)
模式识别(心理学)
核方法
数学
支持向量机
组合数学
执行机构
程序设计语言
作者
Adam Nowicki,Michał Grochowski,Kazimierz Duzinkiewicz
标识
DOI:10.2478/v10006-012-0070-1
摘要
Kernel Principal Component Analysis (KPCA), an example of machine learning, can be considered a non-linear extension of the PCA method. While various applications of KPCA are known, this paper explores the possibility to use it for building a data-driven model of a non-linear system-the water distribution system of the Chojnice town (Poland). This model is utilised for fault detection with the emphasis on water leakage detection. A systematic description of the system’s framework is followed by evaluation of its performance. Simulations prove that the presented approach is both flexible and efficient.
科研通智能强力驱动
Strongly Powered by AbleSci AI