重组DNA
大肠杆菌
肠肽酶
生物化学
化学
分子生物学
生物
融合蛋白
基因
作者
Alison Ward,Malcolm Anderson,R. I. Craggs,Justine Maltby,Caroline Grahames,Rick Davies,Donna K. Finch,Debbie V. Pattison,Heather Oakes,Philip R. Mallinder
标识
DOI:10.1016/j.pep.2009.05.004
摘要
The physiological activities of Interleukin-15 (IL-15) suggest that it could be useful as an immunomodulator to activate the innate immune system, however, the expression and purification yields of recombinant mature IL-15 have typically been low. In this report, a method was optimised to generate milligram quantities of this cytokine. Human IL-15 with an N-terminal (His)(6)-tag was expressed in Escherichia coli as an insoluble protein. The IL-15 material was purified from other cellular proteins by dissolution in 6M guanidine HCl, followed by Ni-NTA chromatography in a buffer containing 8M urea. Use of a multi-component screen identified the optimal conditions for folding (His)(6)-tagged human IL-15 and the method was scaled up to produce milligram quantities of folded material in its native conformation, with two intra-molecular disulphides as determined by electrospray mass spectrometry. Mature IL-15 was generated by cleavage with recombinant enterokinase, which was subsequently removed by Ni-NTA chromatography. Identical methods were used to produce mature cynomolgus monkey (Macaca fascicularis) IL-15 in similar quantities. Human and cynomolgus IL-15 were both active in two IL-15 dependent assays; mouse CTLL2 cell proliferation and human and cynomolgus CD69 upregulation on CD3(-) CD8+ lymphocytes in whole blood. Despite being 96% identical at the amino acid level the human IL-15 was 10-fold more potent than the cynomolgus IL-15 in both assays. The methods described here are useful for producing both mature IL-15 proteins in sufficient quantity for in vivo and in vitro studies, including X-ray crystallography.
科研通智能强力驱动
Strongly Powered by AbleSci AI