生物
斑马鱼
胚胎
细胞生物学
单元格排序
胚胎干细胞
转基因
细胞培养
分子生物学
生殖细胞
祖细胞
体外
干细胞
遗传学
基因
作者
Lianchun Fan,Jesung Moon,Tan F. Wong,Jennifer Crodian,Paul Collodi
出处
期刊:Stem Cells and Development
[Mary Ann Liebert]
日期:2008-06-01
卷期号:17 (3): 585-598
被引量:54
标识
DOI:10.1089/scd.2007.0178
摘要
Although embryonic germ (EG) cell-mediated gene transfer has been successful in the mouse for more than a decade, this approach is limited in other species due to the difficulty of isolating the small numbers of progenitors of germ cell lineage (PGCs) from early-stage embryos and the lack of information on the in vitro culture requirements of the cells. In this study, methods were established for the culture of PGCs obtained from zebrafish embryos. Transgenic embryos that express the red fluorescent protein (RFP) under the control of the PGC-specific vasa promoter were used, making it possible to isolate pure populations of PGCs by fluorescence-activated cell sorting (FACS) and to optimize the culture conditions by counting the number of fluorescent PGC colonies produced in different media. Cultures initiated from 26-somite-stage embryos contained the highest percentage of PGCs that proliferated in vitro to generate colonies. The effect of growth factors, including Kit ligand a and b (Kitlga and Kitlgb) and stromal cell-derived factor 1a and 1b (Sdf-1a and Sdf-1b), on PGC proliferation was studied. Optimal in vitro growth and survival of the zebrafish PGCs was achieved when recombinant Kitlga and Sdf-1b were added to the culture medium through transfected feeder cells, resulting in a doubling of the number of PGC colonies. Results from RT-PCR and in situ hybridization analysis demonstrated that PGCs maintained in culture expressed the kita receptor, even though receptor expression was not detected in PGCs isolated by FACS directly from dissociated embryos. In optimal growth conditions, the PGCs continued to proliferate for at least 4 months in culture. The capacity to establish long-term PGC cultures from zebrafish will make it possible to conduct in vitro studies of germ cell differentiation and EG cell pluripotency in this model species and may be valuable for the development of a cell-mediated gene transfer approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI