Growth-Competition-Based Stem Diameter and Volume Modeling for Tree-Level Forest Inventory Using Airborne LiDAR Data

激光雷达 树(集合论) 森林资源清查 体积热力学 遥感 天蓬 胸径 数学 测距 林业 算法 计算机科学 组合数学 物理 地质学 生物 地理 森林经营 生态学 电信 量子力学
作者
Chien-Shun Lo,Chinsu Lin
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:51 (4): 2216-2226 被引量:55
标识
DOI:10.1109/tgrs.2012.2211023
摘要

An individual tree within a forest stand will have its height and diameter growth restricted by the influence of neighboring trees. This is because trees in close proximity compete for resources and space to enable growth. In this paper, the position of trees, tree height (LH), tree crown radius (LCR), and growth competition index (LCI) were extracted from a light-detection-and-ranging (LiDAR)-based rasterized canopy height model using the multilevel morphological active-contour algorithm. The diameter and volume of individual trees are tested and validated to be an exponential function of those LiDAR-derived tree parameters. The best LiDAR-based diameter estimation model and volume estimation model were tested as significant with an R 2 value of 0.84 and 0.9 and evaluated with an estimation bias of 8.7 cm and 0.91 m 3 , respectively. Results also showed that LH and LCR are positively related to the LiDAR-derived diameter at breast height (DBH) and the LiDAR-derived volume of individual trees in a forest stand, whereas LCI is negatively related. The proposed algorithm of individual tree volume estimation was further applied to predict the volume of three sample plots in mountainous forest stands. It was found that the LVM could be used to predict an acceptable volume estimate of old-aged forest stands. The estimation bias, i.e., percentage RMSE (RMSE%), is averaged at around 4% using the LiDAR metrics lnLH, LCI, and LCR, whereas the RMSE% increases to 50% if only lnLH is applied. Results suggest that LCI is an important regulation factor in the estimation of forest volume stocks using LiDAR remote sensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助100
刚刚
burninhell完成签到,获得积分10
1秒前
1秒前
充电宝应助小商采纳,获得10
1秒前
LL发布了新的文献求助10
2秒前
PC发布了新的文献求助10
2秒前
雨霧雲完成签到,获得积分10
2秒前
坚定龙猫完成签到,获得积分10
2秒前
睡睡完成签到,获得积分10
4秒前
courage发布了新的文献求助10
4秒前
落寞平蝶完成签到,获得积分20
4秒前
yangya完成签到,获得积分10
4秒前
翁雁丝完成签到 ,获得积分10
4秒前
4秒前
5秒前
啊TiP完成签到,获得积分0
6秒前
lswhyr发布了新的文献求助20
6秒前
6秒前
CQ发布了新的文献求助10
6秒前
橙橙橙完成签到,获得积分10
7秒前
顾矜应助小狐狸采纳,获得10
7秒前
Kidmuse完成签到,获得积分10
8秒前
wuhuhuhu发布了新的文献求助10
8秒前
lijianguo完成签到,获得积分10
10秒前
10秒前
小刘发布了新的文献求助10
11秒前
nandiaozhimu完成签到,获得积分10
11秒前
11秒前
WGOIST完成签到,获得积分10
13秒前
赘婿应助nandiaozhimu采纳,获得10
13秒前
HUCAI完成签到,获得积分10
14秒前
细心灭龙发布了新的文献求助10
15秒前
李李发布了新的文献求助10
15秒前
15秒前
卡通猫发布了新的文献求助10
15秒前
15秒前
北海完成签到,获得积分20
15秒前
香蕉觅云应助章鱼饭采纳,获得10
16秒前
西门吹雪发布了新的文献求助30
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960243
求助须知:如何正确求助?哪些是违规求助? 3506394
关于积分的说明 11129837
捐赠科研通 3238572
什么是DOI,文献DOI怎么找? 1789819
邀请新用户注册赠送积分活动 871927
科研通“疑难数据库(出版商)”最低求助积分说明 803099