Growth-Competition-Based Stem Diameter and Volume Modeling for Tree-Level Forest Inventory Using Airborne LiDAR Data

激光雷达 树(集合论) 森林资源清查 体积热力学 遥感 天蓬 胸径 数学 测距 林业 算法 计算机科学 组合数学 物理 地质学 生物 地理 森林经营 生态学 量子力学 电信
作者
Chien-Shun Lo,Chinsu Lin
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:51 (4): 2216-2226 被引量:55
标识
DOI:10.1109/tgrs.2012.2211023
摘要

An individual tree within a forest stand will have its height and diameter growth restricted by the influence of neighboring trees. This is because trees in close proximity compete for resources and space to enable growth. In this paper, the position of trees, tree height (LH), tree crown radius (LCR), and growth competition index (LCI) were extracted from a light-detection-and-ranging (LiDAR)-based rasterized canopy height model using the multilevel morphological active-contour algorithm. The diameter and volume of individual trees are tested and validated to be an exponential function of those LiDAR-derived tree parameters. The best LiDAR-based diameter estimation model and volume estimation model were tested as significant with an R 2 value of 0.84 and 0.9 and evaluated with an estimation bias of 8.7 cm and 0.91 m 3 , respectively. Results also showed that LH and LCR are positively related to the LiDAR-derived diameter at breast height (DBH) and the LiDAR-derived volume of individual trees in a forest stand, whereas LCI is negatively related. The proposed algorithm of individual tree volume estimation was further applied to predict the volume of three sample plots in mountainous forest stands. It was found that the LVM could be used to predict an acceptable volume estimate of old-aged forest stands. The estimation bias, i.e., percentage RMSE (RMSE%), is averaged at around 4% using the LiDAR metrics lnLH, LCI, and LCR, whereas the RMSE% increases to 50% if only lnLH is applied. Results suggest that LCI is an important regulation factor in the estimation of forest volume stocks using LiDAR remote sensing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
笨笨烨华完成签到 ,获得积分10
1秒前
1秒前
1秒前
lee完成签到,获得积分10
1秒前
明玖完成签到 ,获得积分10
3秒前
七七完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
鱼鱼发布了新的文献求助10
4秒前
季茂申完成签到 ,获得积分10
4秒前
zoe发布了新的文献求助10
5秒前
跳跃完成签到,获得积分10
5秒前
无极微光应助科研通管家采纳,获得20
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
LZC应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
kkk应助科研通管家采纳,获得10
6秒前
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
程程完成签到,获得积分10
6秒前
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
kermitds完成签到 ,获得积分10
6秒前
明理纹应助科研通管家采纳,获得10
6秒前
6秒前
syhjxk完成签到,获得积分10
6秒前
GuoH完成签到,获得积分10
6秒前
zzzzz完成签到,获得积分10
7秒前
xiang完成签到,获得积分10
7秒前
7秒前
郑嘻嘻完成签到,获得积分10
7秒前
8秒前
微风正好完成签到 ,获得积分10
8秒前
8秒前
小美最棒完成签到,获得积分10
8秒前
mengwensi完成签到,获得积分10
8秒前
刻苦小丸子完成签到,获得积分10
9秒前
尉迟希望完成签到,获得积分0
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664846
求助须知:如何正确求助?哪些是违规求助? 4871596
关于积分的说明 15109131
捐赠科研通 4823659
什么是DOI,文献DOI怎么找? 2582486
邀请新用户注册赠送积分活动 1536484
关于科研通互助平台的介绍 1495036