Growth-Competition-Based Stem Diameter and Volume Modeling for Tree-Level Forest Inventory Using Airborne LiDAR Data

激光雷达 树(集合论) 森林资源清查 体积热力学 遥感 天蓬 胸径 数学 测距 林业 算法 计算机科学 组合数学 物理 地质学 生物 地理 森林经营 生态学 电信 量子力学
作者
Chien-Shun Lo,Chinsu Lin
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:51 (4): 2216-2226 被引量:55
标识
DOI:10.1109/tgrs.2012.2211023
摘要

An individual tree within a forest stand will have its height and diameter growth restricted by the influence of neighboring trees. This is because trees in close proximity compete for resources and space to enable growth. In this paper, the position of trees, tree height (LH), tree crown radius (LCR), and growth competition index (LCI) were extracted from a light-detection-and-ranging (LiDAR)-based rasterized canopy height model using the multilevel morphological active-contour algorithm. The diameter and volume of individual trees are tested and validated to be an exponential function of those LiDAR-derived tree parameters. The best LiDAR-based diameter estimation model and volume estimation model were tested as significant with an R 2 value of 0.84 and 0.9 and evaluated with an estimation bias of 8.7 cm and 0.91 m 3 , respectively. Results also showed that LH and LCR are positively related to the LiDAR-derived diameter at breast height (DBH) and the LiDAR-derived volume of individual trees in a forest stand, whereas LCI is negatively related. The proposed algorithm of individual tree volume estimation was further applied to predict the volume of three sample plots in mountainous forest stands. It was found that the LVM could be used to predict an acceptable volume estimate of old-aged forest stands. The estimation bias, i.e., percentage RMSE (RMSE%), is averaged at around 4% using the LiDAR metrics lnLH, LCI, and LCR, whereas the RMSE% increases to 50% if only lnLH is applied. Results suggest that LCI is an important regulation factor in the estimation of forest volume stocks using LiDAR remote sensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
健忘曼冬发布了新的文献求助10
1秒前
redondo完成签到,获得积分10
1秒前
momo完成签到,获得积分10
2秒前
希望天下0贩的0应助meng采纳,获得10
3秒前
龙歪歪发布了新的文献求助10
4秒前
4秒前
暮城完成签到,获得积分10
4秒前
5秒前
云墨完成签到 ,获得积分10
5秒前
7秒前
8秒前
Akim应助caoyy采纳,获得10
8秒前
9秒前
科研通AI2S应助DreamMaker采纳,获得10
9秒前
12秒前
zho发布了新的文献求助30
12秒前
12秒前
ywang发布了新的文献求助10
12秒前
ZD小草完成签到 ,获得积分10
13秒前
健忘曼冬完成签到,获得积分10
14秒前
hkl1542发布了新的文献求助50
15秒前
16秒前
17秒前
KYN完成签到,获得积分10
18秒前
18秒前
桐桐应助叶未晞yi采纳,获得10
18秒前
18秒前
su发布了新的文献求助10
19秒前
123456789完成签到,获得积分10
21秒前
炙热的如柏完成签到,获得积分20
21秒前
22秒前
23秒前
HWei完成签到,获得积分10
23秒前
Ryan完成签到,获得积分10
23秒前
24秒前
Jzhang应助丙队长采纳,获得10
26秒前
27秒前
GXY发布了新的文献求助30
28秒前
Lucas应助专注秋尽采纳,获得10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824