舒张去极化
去极化
窦房结
起搏器电位
生物物理学
复极
房室结
化学
电生理学
反转电位
超极化(物理学)
膜片钳
内科学
医学
生物
心率
心动过速
立体化学
血压
核磁共振波谱
作者
Tamotsu Mitsuiye,Yasuko Shinagawa,Akinori Noma
出处
期刊:Circulation Research
[Ovid Technologies (Wolters Kluwer)]
日期:2000-07-21
卷期号:87 (2): 88-91
被引量:68
标识
DOI:10.1161/01.res.87.2.88
摘要
Several time- and voltage-dependent ionic currents have been identified in cardiac pacemaker cells, including Na(+) current, L- and T-type Ca(2+) currents, hyperpolarization-activated cation current, and various types of delayed rectifier K(+) currents. Mathematical models have demonstrated that spontaneous action potentials can be reconstructed by incorporating these currents, but relative contributions of individual currents vary widely between different models. In 1995, the presence of a novel inward current that was activated by depolarization to the potential range of the slow diastolic depolarization in rabbit sinoatrial (SA) node cells was reported. Because the current showed little inactivation during depolarizing pulses, it was called the sustained inward current (I(st)). A similar current is also found in SA node cells of the guinea pig and rat and in subsidiary pacemaker atrioventricular node cells. Recently, single-channel analysis has revealed a nicardipine-sensitive, 13-pS Na(+) current, which is activated by depolarization to the diastolic potential range in guinea pig SA node cells. This channel differs from rapid voltage-gated Na(+) or L-type Ca(2+) channels both in unitary conductance and gating kinetics. Because I(st) was observed only in spontaneously beating SA node cells, ie, it was absent in quiescent cells dissociated from the same SA or atrioventricular node, an important role of I(st) for generation of intrinsic cardiac automaticity was suggested.
科研通智能强力驱动
Strongly Powered by AbleSci AI