材料科学
结构健康监测
纳米复合材料
碳纳米管
工作(物理)
电压
水泥
机械工程
复合材料
结构工程
电子工程
工程类
电气工程
作者
Antonella D’Alessandro,Filippo Ubertini,Annibale Luigi Materazzi,Simon Laflamme,Maurizio Porfiri
标识
DOI:10.1177/1475921714560071
摘要
This work focuses on the analysis of a new nanocomposite cement-based sensor (carbon nanotube cement-based sensor), for applications in vibration-based structural health monitoring of civil engineering structures. The sensor is constituted of a cement paste doped with multi-walled carbon nanotubes, so that mechanical deformations produce a measurable change of the electrical resistance. Prior work of some of the authors has addressed the fabrication process, dynamic behaviour and implementation to full-scale structural components. Here, we investigate the effectiveness of a linear lumped-circuit electromechanical model, in which dynamic sensing is associated with a strain-dependent modulation of the internal resistance. Salient circuit parameters are identified from a series of experiments where the distance between the electrodes is parametrically varied. Experimental results indicate that the lumped-circuit model is capable of accurately predicting the step response to a voltage input and its steady-state response to a harmonic uniaxial deformation. Importantly, the model is successful in anticipating the presence of a superharmonic component in sensor’s output.
科研通智能强力驱动
Strongly Powered by AbleSci AI