Modularity-based credible prediction of disease genes and detection of disease subtypes on the phenotype-gene heterogeneous network

模块化(生物学) 表型 基因调控网络 异构网络 计算生物学 基因 生物 推论 遗传学 交互网络 遗传异质性 计算机科学 人工智能 基因表达 电信 无线网络 无线
作者
Xin Yao,Hao Han,Yanda Li,Shao Li
出处
期刊:BMC Systems Biology [Springer Nature]
卷期号:5 (1) 被引量:48
标识
DOI:10.1186/1752-0509-5-79
摘要

Abstract Background Protein-protein interaction networks and phenotype similarity information have been synthesized together to discover novel disease-causing genes. Genetic or phenotypic similarities are manifested as certain modularity properties in a phenotype-gene heterogeneous network consisting of the phenotype-phenotype similarity network, protein-protein interaction network and gene-disease association network. However, the quantitative analysis of modularity in the heterogeneous network and its influence on disease-gene discovery are still unaddressed. Furthermore, the genetic correspondence of the disease subtypes can be identified by marking the genes and phenotypes in the phenotype-gene network. We present a novel network inference method to measure the network modularity, and in particular to suggest the subtypes of diseases based on the heterogeneous network. Results Based on a measure which is introduced to evaluate the closeness between two nodes in the phenotype-gene heterogeneous network, we developed a Hitting-Time-based method, CIPHER-HIT, for assessing the modularity of disease gene predictions and credibly prioritizing disease-causing genes, and then identifying the genetic modules corresponding to potential subtypes of the queried phenotype. The CIPHER-HIT is free to rely on any preset parameters. We found that when taking into account the modularity levels, the CIPHER-HIT method can significantly improve the performance of disease gene predictions, which demonstrates modularity is one of the key features for credible inference of disease genes on the phenotype-gene heterogeneous network. By applying the CIPHER-HIT to the subtype analysis of Breast cancer, we found that the prioritized genes can be divided into two sub-modules, one contains the members of the Fanconi anemia gene family, and the other contains a reported protein complex MRE11/RAD50/NBN. Conclusions The phenotype-gene heterogeneous network contains abundant information for not only disease genes discovery but also disease subtypes detection. The CIPHER-HIT method presented here is effective for network inference, particularly on credible prediction of disease genes and the subtype analysis of diseases, for example Breast cancer. This method provides a promising way to analyze heterogeneous biological networks, both globally and locally.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喵喵666完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
沿途有你完成签到 ,获得积分10
2秒前
尹梦成完成签到,获得积分10
2秒前
爆米花应助lilililia采纳,获得10
2秒前
HJJHJH发布了新的文献求助10
3秒前
三三得九完成签到 ,获得积分10
5秒前
华仔应助张小盒采纳,获得10
5秒前
科研通AI6.1应助汪宇采纳,获得10
6秒前
7秒前
烟花应助Dylan采纳,获得10
9秒前
爆米花完成签到,获得积分10
10秒前
风趣烤鸡完成签到,获得积分10
13秒前
13秒前
14秒前
16秒前
16秒前
ivy完成签到 ,获得积分10
16秒前
咕噜圈儿完成签到,获得积分10
18秒前
yurany完成签到 ,获得积分10
19秒前
ruibo发布了新的文献求助30
19秒前
忧伤的雅绿关注了科研通微信公众号
20秒前
22秒前
汪宇发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
27秒前
29秒前
totoo2021完成签到,获得积分10
30秒前
31秒前
岩下松风完成签到,获得积分10
32秒前
32秒前
果子完成签到 ,获得积分10
33秒前
新伟张发布了新的文献求助10
34秒前
panqi发布了新的文献求助10
34秒前
无尘完成签到 ,获得积分10
36秒前
Dylan发布了新的文献求助10
38秒前
fluu完成签到,获得积分20
38秒前
38秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742086
求助须知:如何正确求助?哪些是违规求助? 5405647
关于积分的说明 15343886
捐赠科研通 4883555
什么是DOI,文献DOI怎么找? 2625085
邀请新用户注册赠送积分活动 1573951
关于科研通互助平台的介绍 1530896