Modularity-based credible prediction of disease genes and detection of disease subtypes on the phenotype-gene heterogeneous network

模块化(生物学) 表型 基因调控网络 异构网络 计算生物学 基因 生物 推论 遗传学 交互网络 遗传异质性 计算机科学 人工智能 基因表达 电信 无线网络 无线
作者
Xin Yao,Hao Han,Yanda Li,Shao Li
出处
期刊:BMC Systems Biology [Springer Nature]
卷期号:5 (1) 被引量:48
标识
DOI:10.1186/1752-0509-5-79
摘要

Abstract Background Protein-protein interaction networks and phenotype similarity information have been synthesized together to discover novel disease-causing genes. Genetic or phenotypic similarities are manifested as certain modularity properties in a phenotype-gene heterogeneous network consisting of the phenotype-phenotype similarity network, protein-protein interaction network and gene-disease association network. However, the quantitative analysis of modularity in the heterogeneous network and its influence on disease-gene discovery are still unaddressed. Furthermore, the genetic correspondence of the disease subtypes can be identified by marking the genes and phenotypes in the phenotype-gene network. We present a novel network inference method to measure the network modularity, and in particular to suggest the subtypes of diseases based on the heterogeneous network. Results Based on a measure which is introduced to evaluate the closeness between two nodes in the phenotype-gene heterogeneous network, we developed a Hitting-Time-based method, CIPHER-HIT, for assessing the modularity of disease gene predictions and credibly prioritizing disease-causing genes, and then identifying the genetic modules corresponding to potential subtypes of the queried phenotype. The CIPHER-HIT is free to rely on any preset parameters. We found that when taking into account the modularity levels, the CIPHER-HIT method can significantly improve the performance of disease gene predictions, which demonstrates modularity is one of the key features for credible inference of disease genes on the phenotype-gene heterogeneous network. By applying the CIPHER-HIT to the subtype analysis of Breast cancer, we found that the prioritized genes can be divided into two sub-modules, one contains the members of the Fanconi anemia gene family, and the other contains a reported protein complex MRE11/RAD50/NBN. Conclusions The phenotype-gene heterogeneous network contains abundant information for not only disease genes discovery but also disease subtypes detection. The CIPHER-HIT method presented here is effective for network inference, particularly on credible prediction of disease genes and the subtype analysis of diseases, for example Breast cancer. This method provides a promising way to analyze heterogeneous biological networks, both globally and locally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
soso应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
yizhiGao应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
星威应助科研通管家采纳,获得20
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
1秒前
天天快乐应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
研友_VZG7GZ应助kevindeng采纳,获得20
2秒前
酷炫板凳完成签到 ,获得积分10
3秒前
凡仔完成签到,获得积分10
3秒前
Haicheng完成签到,获得积分10
3秒前
3秒前
Grayball应助平云采纳,获得10
4秒前
子车谷波完成签到,获得积分10
5秒前
5秒前
苏安泠完成签到 ,获得积分10
6秒前
6秒前
英勇的思天完成签到 ,获得积分10
7秒前
zzqx完成签到,获得积分10
9秒前
起司嗯完成签到,获得积分10
9秒前
开放鸵鸟完成签到,获得积分10
9秒前
徐徐发布了新的文献求助10
9秒前
ZZZ发布了新的文献求助10
10秒前
懵懂的子骞完成签到 ,获得积分10
11秒前
mammoth发布了新的文献求助40
11秒前
11秒前
英俊的铭应助Chang采纳,获得10
12秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762