Modularity-based credible prediction of disease genes and detection of disease subtypes on the phenotype-gene heterogeneous network

模块化(生物学) 表型 基因调控网络 异构网络 计算生物学 基因 生物 推论 遗传学 交互网络 遗传异质性 计算机科学 人工智能 基因表达 电信 无线网络 无线
作者
Xin Yao,Hao Han,Yanda Li,Shao Li
出处
期刊:BMC Systems Biology [Springer Science+Business Media]
卷期号:5 (1) 被引量:48
标识
DOI:10.1186/1752-0509-5-79
摘要

Abstract Background Protein-protein interaction networks and phenotype similarity information have been synthesized together to discover novel disease-causing genes. Genetic or phenotypic similarities are manifested as certain modularity properties in a phenotype-gene heterogeneous network consisting of the phenotype-phenotype similarity network, protein-protein interaction network and gene-disease association network. However, the quantitative analysis of modularity in the heterogeneous network and its influence on disease-gene discovery are still unaddressed. Furthermore, the genetic correspondence of the disease subtypes can be identified by marking the genes and phenotypes in the phenotype-gene network. We present a novel network inference method to measure the network modularity, and in particular to suggest the subtypes of diseases based on the heterogeneous network. Results Based on a measure which is introduced to evaluate the closeness between two nodes in the phenotype-gene heterogeneous network, we developed a Hitting-Time-based method, CIPHER-HIT, for assessing the modularity of disease gene predictions and credibly prioritizing disease-causing genes, and then identifying the genetic modules corresponding to potential subtypes of the queried phenotype. The CIPHER-HIT is free to rely on any preset parameters. We found that when taking into account the modularity levels, the CIPHER-HIT method can significantly improve the performance of disease gene predictions, which demonstrates modularity is one of the key features for credible inference of disease genes on the phenotype-gene heterogeneous network. By applying the CIPHER-HIT to the subtype analysis of Breast cancer, we found that the prioritized genes can be divided into two sub-modules, one contains the members of the Fanconi anemia gene family, and the other contains a reported protein complex MRE11/RAD50/NBN. Conclusions The phenotype-gene heterogeneous network contains abundant information for not only disease genes discovery but also disease subtypes detection. The CIPHER-HIT method presented here is effective for network inference, particularly on credible prediction of disease genes and the subtype analysis of diseases, for example Breast cancer. This method provides a promising way to analyze heterogeneous biological networks, both globally and locally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干饭大王应助GT采纳,获得10
1秒前
完美世界应助ZZZ采纳,获得10
2秒前
小绵羊完成签到,获得积分10
3秒前
科研通AI2S应助Jenny采纳,获得10
3秒前
4秒前
7秒前
yinuo发布了新的文献求助10
8秒前
共享精神应助小姜采纳,获得10
8秒前
斯文败类应助小姜采纳,获得100
8秒前
rksm完成签到 ,获得积分10
8秒前
Strongly完成签到,获得积分10
11秒前
尼可深蓝完成签到 ,获得积分10
13秒前
baibai完成签到 ,获得积分10
14秒前
yls发布了新的文献求助10
15秒前
Bin_Liu发布了新的文献求助10
15秒前
17秒前
lumingrui完成签到,获得积分10
20秒前
懒羊羊完成签到,获得积分10
22秒前
bkagyin应助科研通管家采纳,获得10
23秒前
SciGPT应助科研通管家采纳,获得30
23秒前
地表飞猪应助科研通管家采纳,获得10
23秒前
别管我了应助科研通管家采纳,获得10
23秒前
今后应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
Lucas应助科研通管家采纳,获得10
23秒前
桐桐应助科研通管家采纳,获得10
24秒前
今后应助科研通管家采纳,获得10
24秒前
汉堡包应助科研通管家采纳,获得10
24秒前
orixero应助科研通管家采纳,获得10
24秒前
24秒前
归尘发布了新的文献求助10
24秒前
24秒前
24秒前
隐形曼青应助科研通管家采纳,获得10
24秒前
25秒前
哭泣的翠丝完成签到,获得积分10
25秒前
liu完成签到,获得积分10
27秒前
无花果应助yls采纳,获得30
28秒前
归尘完成签到,获得积分10
29秒前
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966223
求助须知:如何正确求助?哪些是违规求助? 3511680
关于积分的说明 11159133
捐赠科研通 3246277
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874347
科研通“疑难数据库(出版商)”最低求助积分说明 804343