Modularity-based credible prediction of disease genes and detection of disease subtypes on the phenotype-gene heterogeneous network

模块化(生物学) 表型 基因调控网络 异构网络 计算生物学 基因 生物 推论 遗传学 交互网络 遗传异质性 计算机科学 人工智能 基因表达 电信 无线网络 无线
作者
Xin Yao,Hao Han,Yanda Li,Shao Li
出处
期刊:BMC Systems Biology [Springer Nature]
卷期号:5 (1) 被引量:48
标识
DOI:10.1186/1752-0509-5-79
摘要

Abstract Background Protein-protein interaction networks and phenotype similarity information have been synthesized together to discover novel disease-causing genes. Genetic or phenotypic similarities are manifested as certain modularity properties in a phenotype-gene heterogeneous network consisting of the phenotype-phenotype similarity network, protein-protein interaction network and gene-disease association network. However, the quantitative analysis of modularity in the heterogeneous network and its influence on disease-gene discovery are still unaddressed. Furthermore, the genetic correspondence of the disease subtypes can be identified by marking the genes and phenotypes in the phenotype-gene network. We present a novel network inference method to measure the network modularity, and in particular to suggest the subtypes of diseases based on the heterogeneous network. Results Based on a measure which is introduced to evaluate the closeness between two nodes in the phenotype-gene heterogeneous network, we developed a Hitting-Time-based method, CIPHER-HIT, for assessing the modularity of disease gene predictions and credibly prioritizing disease-causing genes, and then identifying the genetic modules corresponding to potential subtypes of the queried phenotype. The CIPHER-HIT is free to rely on any preset parameters. We found that when taking into account the modularity levels, the CIPHER-HIT method can significantly improve the performance of disease gene predictions, which demonstrates modularity is one of the key features for credible inference of disease genes on the phenotype-gene heterogeneous network. By applying the CIPHER-HIT to the subtype analysis of Breast cancer, we found that the prioritized genes can be divided into two sub-modules, one contains the members of the Fanconi anemia gene family, and the other contains a reported protein complex MRE11/RAD50/NBN. Conclusions The phenotype-gene heterogeneous network contains abundant information for not only disease genes discovery but also disease subtypes detection. The CIPHER-HIT method presented here is effective for network inference, particularly on credible prediction of disease genes and the subtype analysis of diseases, for example Breast cancer. This method provides a promising way to analyze heterogeneous biological networks, both globally and locally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑一笑完成签到,获得积分10
刚刚
专一的身影完成签到 ,获得积分10
2秒前
2秒前
CodeCraft应助好不了一丶采纳,获得10
3秒前
搜集达人应助噼里啪啦采纳,获得10
4秒前
liyunma发布了新的文献求助10
4秒前
CodeCraft应助安好采纳,获得10
4秒前
5秒前
6秒前
6秒前
微不足道完成签到,获得积分10
6秒前
孙太阳发布了新的文献求助10
7秒前
优雅的怀莲完成签到,获得积分10
8秒前
zhang完成签到,获得积分10
8秒前
9秒前
10秒前
西伯侯完成签到,获得积分10
10秒前
11秒前
奋斗芒果发布了新的文献求助10
11秒前
安AN完成签到,获得积分10
11秒前
huyan完成签到,获得积分10
12秒前
Hancen完成签到,获得积分10
12秒前
12秒前
美满的机器猫完成签到,获得积分10
13秒前
zhang发布了新的文献求助10
13秒前
anla完成签到,获得积分10
13秒前
不眠的人完成签到,获得积分10
13秒前
小洪俊熙完成签到,获得积分10
14秒前
嗣音完成签到,获得积分10
14秒前
饱满的百招完成签到 ,获得积分10
15秒前
乐乐应助友好凌柏采纳,获得10
15秒前
顽固分子完成签到 ,获得积分10
16秒前
16秒前
Yimi刘博完成签到 ,获得积分10
17秒前
民工完成签到,获得积分10
17秒前
称心如意完成签到 ,获得积分10
17秒前
张小苟发布了新的文献求助10
17秒前
17秒前
FashionBoy应助飘逸的大碗采纳,获得10
17秒前
18秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257464
求助须知:如何正确求助?哪些是违规求助? 2899400
关于积分的说明 8305459
捐赠科研通 2568655
什么是DOI,文献DOI怎么找? 1395219
科研通“疑难数据库(出版商)”最低求助积分说明 652967
邀请新用户注册赠送积分活动 630767