WordNet公司
计算机科学
分类
领域(数学分析)
自然语言处理
人工智能
图形
词义消歧
情报检索
词(群论)
随机游动
匹配(统计)
理论计算机科学
语言学
数学
哲学
数学分析
统计
作者
Roberto Navigli,Stefano Faralli,Aitor Soroa,Oier López de Lacalle,Eneko Agirre
标识
DOI:10.1145/2063576.2063955
摘要
In this paper we present a novel approach to learning semantic models for multiple domains, which we use to categorize Wikipedia pages and to perform domain Word Sense Disambiguation (WSD). In order to learn a semantic model for each domain we first extract relevant terms from the texts in the domain and then use these terms to initialize a random walk over the WordNet graph. Given an input text, we check the semantic models, choose the appropriate domain for that text and use the best-matching model to perform WSD. Our results show considerable improvements on text categorization and domain WSD tasks.
科研通智能强力驱动
Strongly Powered by AbleSci AI