Ultraperformance Liquid Chromatography–Mass Spectrometry Based Comprehensive Metabolomics Combined with Pattern Recognition and Network Analysis Methods for Characterization of Metabolites and Metabolic Pathways from Biological Data Sets

代谢组学 化学 代谢途径 低牛磺酸 小桶 代谢组 代谢网络 生物标志物发现 色谱法 计算生物学 新陈代谢 蛋白质组学 牛磺酸 生物化学 氨基酸 转录组 生物 基因 基因表达
作者
Aihua Zhang,Hui Sun,Ying Han,Guangli Yan,Ye Yuan,Gaochen Song,Xiaoxia Yuan,Ning Xie,Xijun Wang
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:85 (15): 7606-7612 被引量:99
标识
DOI:10.1021/ac401793d
摘要

Metabolomics is the study of metabolic changes in biological systems and provides the small molecule fingerprints related to the disease. Extracting biomedical information from large metabolomics data sets by multivariate data analysis is of considerable complexity. Therefore, more efficient and optimizing metabolomics data processing technologies are needed to improve mass spectrometry applications in biomarker discovery. Here, we report the findings of urine metabolomic investigation of hepatitis C virus (HCV) patients by high-throughput ultraperformance liquid chromatography–mass spectrometry (UPLC–MS) coupled with pattern recognition methods (principal component analysis, partial least-squares, and OPLS-DA) and network pharmacology. A total of 20 urinary differential metabolites (13 upregulated and 7 downregulated) were identified and contributed to HCV progress, involve several key metabolic pathways such as taurine and hypotaurine metabolism, glycine, serine and threonine metabolism, histidine metabolism, arginine and proline metabolism, and so forth. Metabolites identified through metabolic profiling may facilitate the development of more accurate marker algorithms to better monitor disease progression. Network analysis validated close contact between these metabolites and implied the importance of the metabolic pathways. Mapping altered metabolites to KEGG pathways identified alterations in a variety of biological processes mediated through complex networks. These findings may be promising to yield a valuable and noninvasive tool that insights into the pathophysiology of HCV and to advance the early diagnosis and monitor the progression of disease. Overall, this investigation illustrates the power of the UPLC–MS platform combined with the pattern recognition and network analysis methods that can engender new insights into HCV pathobiology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助Miao采纳,获得10
2秒前
听思念渐近完成签到,获得积分10
2秒前
keyancui完成签到,获得积分10
3秒前
胡子发布了新的文献求助10
4秒前
华仔应助ElbingX采纳,获得30
5秒前
sissi应助yln采纳,获得10
5秒前
可靠的马丁完成签到,获得积分10
6秒前
西木完成签到,获得积分10
8秒前
温文尔雅完成签到,获得积分10
8秒前
orixero应助XPR采纳,获得10
9秒前
活泼山雁发布了新的文献求助10
9秒前
9秒前
SciGPT应助阳光的梨愁采纳,获得10
9秒前
10秒前
12秒前
大樗完成签到,获得积分10
13秒前
研友_Z72jyn发布了新的文献求助10
13秒前
13秒前
14秒前
望常桑完成签到 ,获得积分10
14秒前
夜之樱花完成签到,获得积分10
14秒前
hdc12138发布了新的文献求助10
16秒前
诸葛翼德完成签到,获得积分10
16秒前
安详的梦旋完成签到,获得积分10
16秒前
单纯的易文完成签到 ,获得积分10
17秒前
17秒前
yrma发布了新的文献求助10
18秒前
活泼山雁完成签到,获得积分10
18秒前
XPR完成签到 ,获得积分10
18秒前
温暖草莓完成签到,获得积分10
18秒前
zai发布了新的文献求助10
20秒前
20秒前
今天不学习明天变垃圾完成签到,获得积分10
22秒前
umil完成签到 ,获得积分10
22秒前
22秒前
TT完成签到,获得积分10
23秒前
hdc12138完成签到,获得积分10
24秒前
yrma完成签到,获得积分10
25秒前
狮子座完成签到 ,获得积分10
25秒前
小蘑菇应助大樗采纳,获得10
26秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162652
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900951
捐赠科研通 2473107
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631468
版权声明 602175