Erlang-R: A Time-Varying Queue with Reentrant Customers, in Support of Healthcare Staffing

Erlang(编程语言) 人员配备 可重入 计算机科学 排队论 排队 运筹学 分布式计算 计算机网络 操作系统 数学 理论计算机科学 医学 函数式程序设计 护理部
作者
Galit B. Yom‐Tov,Avishai Mandelbaum
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:16 (2): 283-299 被引量:145
标识
DOI:10.1287/msom.2013.0474
摘要

We analyze a queueing model that we call Erlang-R, where the “R” stands for reentrant customers. Erlang-R accommodates customers who return to service several times during their sojourn within the system, and its modeling power is most pronounced in time-varying environments. Indeed, it was motivated by healthcare systems, in which offered-loads vary over time and patients often go through a repetitive service process. Erlang-R helps answer questions such as how many servers (physicians/nurses) are required to achieve predetermined service levels. Formally, it is merely a two-station open queueing network, which, in a steady state, evolves like an Erlang-C (M/M/s) model. In time-varying environments, on the other hand, the situation differs: here one must account for the reentrant nature of service to avoid excessive staffing costs or undesirable service levels. We validate Erlang-R against an emergency ward (EW) operating under normal conditions as well as during a mass casualty event (MCE). In both scenarios, we apply time-varying fluid and diffusion approximations: the EW is critically loaded and the MCE is overloaded. In particular, for the EW we propose a time-varying square-root staffing policy, based on the modified offered-load, which is proved to perform well over small-to-large systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理的蜗牛完成签到,获得积分10
刚刚
刚刚
jiayouYi完成签到,获得积分10
1秒前
sunzhiyu233完成签到,获得积分20
1秒前
怡然菲音发布了新的文献求助10
1秒前
袁访天完成签到,获得积分10
2秒前
英姑应助RONG采纳,获得10
2秒前
2秒前
3秒前
冷酷尔琴发布了新的文献求助10
4秒前
4秒前
4秒前
kai_完成签到,获得积分10
5秒前
Tikh完成签到,获得积分10
5秒前
充电宝应助通~采纳,获得10
5秒前
科研雷锋发布了新的文献求助10
6秒前
坚强亦丝应助香蕉初瑶采纳,获得10
6秒前
wormzjl完成签到,获得积分10
7秒前
朱先生完成签到 ,获得积分10
7秒前
饱满的大碗完成签到 ,获得积分10
7秒前
8秒前
ding应助Ymj采纳,获得10
8秒前
8秒前
科研欣路发布了新的文献求助30
8秒前
9秒前
111发布了新的文献求助10
9秒前
田様应助冷酷尔琴采纳,获得10
9秒前
李健应助杰克李李采纳,获得10
10秒前
10秒前
Nefelibata发布了新的文献求助10
10秒前
非常可爱应助时尚的书易采纳,获得20
10秒前
11秒前
敏感初露发布了新的文献求助10
11秒前
汉堡包应助thousandlong采纳,获得10
12秒前
Liu发布了新的文献求助10
12秒前
12秒前
13秒前
胖豆完成签到,获得积分10
14秒前
14秒前
通~发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740