同态加密
计算机科学
加密
卡尔曼滤波器
信息隐私
光学(聚焦)
反演(地质)
计算
职位(财务)
状态向量
加速度
算法
计算机安全
人工智能
古生物学
物理
财务
构造盆地
经典力学
光学
经济
生物
作者
F.J. González-Serrano,Adrián Amor-Martín,Jorge Casamayón-Antón
标识
DOI:10.1109/wifs.2014.7084303
摘要
In this paper, we focus on the parameter estimation of dynamic state-space models using privacy-protected data. We consider an scenario with two parties: on one side, the data owner, which provides privacy-protected observations to, on the other side, an algorithm owner, that processes them to learn the system’s state vector. We combine additive homomorphic encryption and Secure Multiparty Computation protocols to develop secure functions (multiplication, division, matrix inversion) that keep all the intermediate values encrypted in order to effectively preserve the data privacy. As an application, we consider a tracking problem, in which a Extended Kalman Filter estimates the position, velocity and acceleration of a moving target in a collaborative environment where encrypted distance measurements are used.
科研通智能强力驱动
Strongly Powered by AbleSci AI