文件夹
有界函数
数学
畸变函数
失真(音乐)
功能(生物学)
期望效用假设
趋同(经济学)
累积前景理论
数学优化
数理经济学
金融市场
投资(军事)
经济
计算机科学
金融经济学
财务
数学分析
政治
统计
生物
进化生物学
解码方法
放大器
法学
经济增长
带宽(计算)
计算机网络
政治学
作者
Miklós Rásonyi,Andrea M. Rodrigues
摘要
This paper examines an optimal investment problem in a continuous-time (essentially) complete financial market with a finite horizon. We deal with an investor who behaves consistently with principles of Cumulative Prospect Theory, and whose utility function on gains is bounded above. The well-posedness of the optimisation problemis trivial, and a necessary condition for the existence of an optimal trading strategyis derived. This condition requires that the investor's probability distortion function on losses does not tend to 0 near 0 faster than a given rate, which is determined by the utility function. Under additional assumptions, we show that this condition is indeed the borderline for attainability, in the sense that for slower convergence of the distortion function there does exist an optimal portfolio.
科研通智能强力驱动
Strongly Powered by AbleSci AI