阿累尼乌斯方程
外温
大气温度范围
动力学
热力学
活化能
限制
航程(航空)
阿伦尼乌斯图
材料科学
化学
生态学
物理
生物
物理化学
机械工程
量子力学
工程类
复合材料
作者
Jennifer L. Knies,Joel G. Kingsolver
摘要
The initial rise of fitness that occurs with increasing temperature is attributed to Arrhenius kinetics, in which rates of reaction increase exponentially with increasing temperature. Models based on Arrhenius typically assume single rate-limiting reactions over some physiological temperature range for which all the rate-limiting enzymes are in 100% active conformation. We test this assumption using data sets for microbes that have measurements of fitness (intrinsic rate of population growth) at many temperatures and over a broad temperature range and for diverse ectotherms that have measurements at fewer temperatures. When measurements are available at many temperatures, strictly Arrhenius kinetics are rejected over the physiological temperature range. However, over a narrower temperature range, we cannot reject strictly Arrhenius kinetics. The temperature range also affects estimates of the temperature dependence of fitness. These results indicate that Arrhenius kinetics only apply over a narrow range of temperatures for ectotherms, complicating attempts to identify general patterns of temperature dependence.
科研通智能强力驱动
Strongly Powered by AbleSci AI