Mechanisms of peroxide stabilization. An investigation of some reactions of hydrogen peroxide in the presence of aminophosphonic acids
过氧化氢
化学
过氧化物
光化学
有机化学
作者
Susan Croft,Bruce C. Gilbert,John R. Lindsay Smith,Jonathan K. Stell,William R. Sanderson
出处
期刊:Journal of the Chemical Society日期:1992-01-01卷期号: (2): 153-153被引量:37
标识
DOI:10.1039/p29920000153
摘要
It has been established by continuous-flow studies in conjunction with EPR spectroscopy that the aminophosphonic acids 1–4 accelerate significantly the Fenton reaction between FeII and H2O2 in aqueous solution via complexation of the metal ion (with values of the rate constant k for the generation of the hydroxyl radical up to 2 × 105 dm3 mol–1 s–1 at room temperature). To a certain extent this behaviour parallels that of EDTA and some structurally-related aminocarboxylic acids. It is also shown that the N-oxides of the aminophosphonic acids 1–3 react readily with the hydroxyl radical to give long-lived nitroxides viaβ-scission of first-formed carbon-centred radicals.Neither of these findings is believed to correspond to the major chemistry which underlies the efficacy of these ligands as peroxide stabilizers. It is suggested instead that the crucial role of these compounds depends upon their ability to stabilize the higher valence state of iron, and hence not only to encourage oxidation of FeII by O2˙– and H2O2 but also to prevent effective reduction of FeIII by O2˙–, HO2˙ and H2O2. However, radical scavenging by N-oxides may be a secondary, contributory factor in this stabilizing function, especially in peroxide systems when the sequestrant is added before storage, when slow N-oxidation is to be expected.