Abstract Rock‐ice avalanche events are among the most hazardous natural disasters in the last century. In contrast to rock avalanches, the solid phase (ice) can transform to fluid during the course of the rock‐ice avalanche and fundamentally alter mechanical processes. A real two‐phase debris flow model could better address the dynamic interaction of solid (rock and ice) and fluid (water, snow, slurry, and fine particles) than presently used single‐phase Voellmy‐ or Coulomb‐type models. We present a two‐phase model capable of performing dynamic strength weakening due to internal fluidization and basal lubrication and internal mass and momentum exchanges between the phases. Effective basal and internal friction angles are variable and correspond to evolving effective solid volume fraction, friction factors, volume fraction of the ice, true friction coefficients, and lubrication and fluidization factors. Benchmark numerical simulations demonstrate that the two‐phase model can explain dynamically changing frictional properties of rock‐ice avalanches that occur internally and along the flow path. The interphase mass and momentum exchanges are capable of demonstrating the mechanics of frontal surge head and multiple other surges in the debris body. This is an observed phenomenon in a real two‐phase debris flow, but newly simulated here by applying the two‐phase mass flow model. Mass and momentum exchanges between the phases and the associated internal and basal strength weakening control the exceptional long runout distances, provide a more realistic simulation especially during the critical initial and propagation stages of avalanche, and explain the exceptionally high and dynamically changing mobility of rock‐ice avalanches.