Wave aberration of human eyes and new descriptors of image optical quality and visual performance

泽尼克多项式 波前 图像质量 人眼 波前传感器 计算机科学 自适应光学 眼睛畸变 计算机视觉 像面 人工智能 激光矫视 球差 光学像差 小学生 光学 验光服务 物理 图像(数学) 医学 镜头(地质) 角膜
作者
Marco Lombardo,Giuseppe Lombardo
出处
期刊:Journal of Cataract and Refractive Surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:36 (2): 313-331 被引量:181
标识
DOI:10.1016/j.jcrs.2009.09.026
摘要

The expansion of wavefront-sensing techniques redefined the meaning of refractive error in clinical ophthalmology. Clinical aberrometers provide detailed measurements of the eye's wavefront aberration. The distribution and contribution of each higher-order aberration to the overall wavefront aberration in the individual eye can now be accurately determined and predicted. Using corneal or ocular wavefront sensors, studies have measured the interindividual and age-related changes in the wavefront aberration in the normal population with the goal of optimizing refractive surgery outcomes for the individual. New objective optical-quality metrics would lead to better use and interpretation of newly available information on aberrations in the eye. However, the first metrics introduced, based on sets of Zernike polynomials, is not completely suitable to depict visual quality because they do not directly relate to the quality of the retinal image. Thus, several approaches to describe the real, complex optical performance of human eyes have been implemented. These include objective metrics that quantify the quality of the optical wavefront in the plane of the pupil (ie, pupil-plane metrics) and others that quantify the quality of the retinal image (ie, image-plane metrics). These metrics are derived by wavefront aberration information from the individual eye. This paper reviews the more recent knowledge of the wavefront aberration in human eyes and discusses the image-quality and optical-quality metrics and predictors that are now routinely calculated by wavefront-sensor software to describe the optical and image quality in the individual eye. Financial Disclosure: Neither author has a financial or proprietary interest in any material or method mentioned.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于彦祖应助33采纳,获得30
刚刚
刚刚
geejee完成签到,获得积分10
1秒前
2秒前
腼腆的语海完成签到,获得积分20
3秒前
隐形曼青应助负责的沛柔采纳,获得10
6秒前
狐蝶完成签到,获得积分10
6秒前
mhl11应助11111采纳,获得10
6秒前
香蕉觅云应助老干部采纳,获得10
7秒前
rosen关注了科研通微信公众号
9秒前
星辰大海应助Jerry采纳,获得10
10秒前
冰糖葫芦完成签到 ,获得积分10
10秒前
11秒前
躺赢完成签到 ,获得积分20
12秒前
小橙子完成签到 ,获得积分10
14秒前
15秒前
慕青应助杨丽佳采纳,获得30
15秒前
huo应助wu61采纳,获得30
15秒前
15秒前
16秒前
淡定井完成签到 ,获得积分10
17秒前
17秒前
Gaojie Yan发布了新的文献求助10
18秒前
丘比特应助躺赢采纳,获得20
20秒前
21秒前
爆米花应助科研通管家采纳,获得10
21秒前
领导范儿应助科研通管家采纳,获得10
21秒前
香蕉觅云应助科研通管家采纳,获得10
21秒前
SCINEXUS应助科研通管家采纳,获得30
21秒前
如初应助科研通管家采纳,获得10
21秒前
共享精神应助科研通管家采纳,获得10
21秒前
SCINEXUS应助科研通管家采纳,获得20
21秒前
21秒前
深情安青应助科研通管家采纳,获得10
21秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
22秒前
彭于晏应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
李lll发布了新的文献求助10
22秒前
星辰大海应助科研通管家采纳,获得10
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305951
求助须知:如何正确求助?哪些是违规求助? 2939805
关于积分的说明 8494633
捐赠科研通 2614075
什么是DOI,文献DOI怎么找? 1427938
科研通“疑难数据库(出版商)”最低求助积分说明 663212
邀请新用户注册赠送积分活动 648035