Wave aberration of human eyes and new descriptors of image optical quality and visual performance

泽尼克多项式 波前 图像质量 人眼 波前传感器 计算机科学 自适应光学 眼睛畸变 计算机视觉 像面 人工智能 激光矫视 球差 光学像差 小学生 光学 验光服务 物理 图像(数学) 医学 镜头(地质) 角膜
作者
Marco Lombardo,Giuseppe Lombardo
出处
期刊:Journal of Cataract and Refractive Surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:36 (2): 313-331 被引量:181
标识
DOI:10.1016/j.jcrs.2009.09.026
摘要

The expansion of wavefront-sensing techniques redefined the meaning of refractive error in clinical ophthalmology. Clinical aberrometers provide detailed measurements of the eye's wavefront aberration. The distribution and contribution of each higher-order aberration to the overall wavefront aberration in the individual eye can now be accurately determined and predicted. Using corneal or ocular wavefront sensors, studies have measured the interindividual and age-related changes in the wavefront aberration in the normal population with the goal of optimizing refractive surgery outcomes for the individual. New objective optical-quality metrics would lead to better use and interpretation of newly available information on aberrations in the eye. However, the first metrics introduced, based on sets of Zernike polynomials, is not completely suitable to depict visual quality because they do not directly relate to the quality of the retinal image. Thus, several approaches to describe the real, complex optical performance of human eyes have been implemented. These include objective metrics that quantify the quality of the optical wavefront in the plane of the pupil (ie, pupil-plane metrics) and others that quantify the quality of the retinal image (ie, image-plane metrics). These metrics are derived by wavefront aberration information from the individual eye. This paper reviews the more recent knowledge of the wavefront aberration in human eyes and discusses the image-quality and optical-quality metrics and predictors that are now routinely calculated by wavefront-sensor software to describe the optical and image quality in the individual eye. Financial Disclosure: Neither author has a financial or proprietary interest in any material or method mentioned.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Stitch完成签到 ,获得积分10
刚刚
刚刚
眯眯眼的冷珍完成签到,获得积分10
刚刚
bjyx完成签到,获得积分10
刚刚
reck完成签到,获得积分10
1秒前
pharmstudent发布了新的文献求助30
1秒前
小田完成签到,获得积分10
1秒前
小喵发布了新的文献求助10
2秒前
FashionBoy应助毛毛哦啊采纳,获得10
2秒前
Lucas应助Chen采纳,获得10
3秒前
强健的蚂蚁完成签到,获得积分20
3秒前
小宇发布了新的文献求助10
3秒前
斜杠武完成签到,获得积分20
3秒前
4秒前
伞兵龙发布了新的文献求助10
4秒前
RC_Wang应助科研小民工采纳,获得10
4秒前
sanben完成签到,获得积分10
4秒前
4秒前
_蝴蝶小姐完成签到,获得积分10
5秒前
诗轩发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
迟大猫应助乐乱采纳,获得10
7秒前
万能图书馆应助派大星采纳,获得10
8秒前
FashionBoy应助娜行采纳,获得10
9秒前
9秒前
传奇3应助后知后觉采纳,获得10
10秒前
10秒前
10秒前
科研通AI2S应助Chem is try采纳,获得10
10秒前
11秒前
a方舟发布了新的文献求助10
11秒前
寒冷书竹发布了新的文献求助10
11秒前
11秒前
hhh发布了新的文献求助10
11秒前
顾矜应助富婆嘉嘉子采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672