感染的多重性
生物
病毒学
细胞培养
单纯疱疹病毒
病毒
重组DNA
重组病毒
HEK 293细胞
病毒载体
转染
分子生物学
共感染
基因
遗传学
作者
Dennis W. Thomas,Lijun Wang,Justine Niamke,Jilin Liu,Kai Wen,Marina M. Scotti,Guo‐Jie Ye,Gábor Veres,David R. Knop
出处
期刊:Human Gene Therapy
[Mary Ann Liebert]
日期:2009-08-01
卷期号:20 (8): 861-870
被引量:83
摘要
Recombinant adeno-associated virus (rAAV) production systems capable of meeting clinical or anticipated commercial-scale manufacturing needs have received relatively little scrutiny compared with the intense research activity afforded the in vivo and in vitro evaluation of rAAV for gene transfer. Previously we have reported a highly efficient recombinant herpes simplex virus type 1 (rHSV) complementation system for rAAV production in multiple adherent cell lines; however, production in a scalable format was not demonstrated. Here we report rAAV production by rHSV coinfection of baby hamster kidney (BHK) cells grown in suspension (sBHK cells), using two ICP27-deficient rHSV vectors, one harboring a transgene flanked by the AAV2 inverted terminal repeats and a second bearing the AAV rep2 and capX genes (where X is any rAAV serotype). The rHSV coinfection of sBHK cells produced similar rAAV1/AAT-specific yields (85,400 DNase-resistant particles [DRP]/cell) compared with coinfection of adherent HEK-293 cells (74,600 DRP/cell); however, sBHK cells permitted a 3-fold reduction in the rHSV-rep2/capX vector multiplicity of infection, grew faster than HEK-293 cells, retained specific yields (DRP/cell) at higher cell densities, and had a decreased virus production cycle. Furthermore, sBHK cells were able to produce AAV serotypes 1, 2, 5, and 8 at similar specific yields, using multiple therapeutic genes. rAAV1/AAT production in sBHK cells was scaled to 10-liter disposable bioreactors, using optimized spinner flask infection conditions, and resulted in average volumetric productivities as high as 2.4 x 10(14) DRP/liter.
科研通智能强力驱动
Strongly Powered by AbleSci AI