蓝移
发光二极管
电致发光
光电子学
二极管
材料科学
结温
电流密度
像素
波长
光学
红移
带隙
物理
热的
光致发光
纳米技术
天体物理学
图层(电子)
量子力学
银河系
气象学
作者
Zheng Gong,Shirong Jin,Yujie Chen,Jonathan J. D. McKendry,D. Massoubre,I. M. Watson,Erdan Gu,Martin D. Dawson
摘要
We have systematically investigated the impact of device size scaling on the light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes (LEDs). Devices with diameters in the range 20–300 μm have been studied. It is shown that smaller LED pixels can deliver higher power densities (despite the lower absolute output powers) and sustain higher current densities. Investigations of the electroluminescence characteristics of differently sized pixels against current density reveal that the spectral shift is dominated by blueshift at the low current density level and then by redshift at the high current density level, owing to the competition between the bandgap shrinkage caused by self-heating and band-filling effects. The redshift of the emission wavelength with increasing current density is much faster and larger for the bigger pixels, suggesting that the self-heating effect is also size dependent. This is further confirmed by the junction-temperature rise measured by the established spectral shift method. It is shown that the junction-temperature rise in smaller pixels is slower, which in turn explains why the smaller redshift of the emission wavelength with current density is present in smaller pixels. The measured size-dependent junction temperature is in reasonable agreement with finite element method simulation results.
科研通智能强力驱动
Strongly Powered by AbleSci AI